Ever since the recognition of the causality between earthquakes in the Region Groningen (The Netherlands), gas production and the ensuing damage to houses and buildings in that area, government faces big challenges in policy-making. On the one hand liability for damages must result in fast and effective repair of houses and buildings and in safety safeguards for the infrastructure. On the other hand public trust in governmental institutions in the Earthquake area Groningen has to be restored.As a result of the advice of the Commission ‘Sustainable Future North East Groningen’ a comprehensive package of measures called ‘Trust in restoration, Restoration of trust’ (‘Vertrouwen op herstel, Herstel van vertrouwen’) was announced in which public-private partnerships were introduced for the purpose and in favor of the economic perspective of the region, including the establishment of local initiatives on sustainable energy, damage repair and guaranteeing a confidential approach by the government.Multiple actors are involved in the execution of this package of measures, since the competence of decision-making lies at State, regional and local level. Together with the emergence of public-private partnerships this all results in a very complex case of multi-level governance and policy-making.The central research question this article addresses is whether public-private partnerships contribute in a legal and effective manner to policy-making following the package of measures ‘Trust in restoration, Restoration of trust’ in the Energy Port Region Groningen.
Groningen gas field is the largest on-land gas resource in the world and is beingexploited since 1963. There are damaging earthquakes, the largest of which was 3.6 magnitude. The recursive induced earthquakes are often blamed for triggering the structural damages in thousands of houses in the area. A damage claim procedure takes place after each significantly felt earthquake. The liability of the exploiting company is related to the damages and the engineering firms and experts are asked to correlate the claimed damages with a past earthquake. Structures in the region present high vulnerabilities to the lateral forces, soilproperties are quite unfavourable for seismic resistance, and structural damages are present even without earthquakes. This situation creates a dispute area where one can claim that most structures in the region were already damaged because of the fact that the soil is soft, the ground water table oscillates, and structures are vulnerable to external conditions anyhow and deteriorate in time, which can be the main cause of such structural damages. This ambiguity of damage vs earthquake correlation is one of the main sources of the public unrest in the area up until today. This study presents the perspective of people in the region in terms of liveability and the social acceptance of earthquakes in their lives. An attempt has been made to translate these social effects and expectations into structural performance metrics for ordinary houses in the region. A new seismic design and assessment approach, called Comfort Level Earthquake (CLE) has been proposed.
The pipelines are buried structures. They move together with the soil during a seismic event. They are affected from ground motions. The project aims to find out the possible effects of Groningen earthquakes on pipelines of Loppersum and Slochteren.This project is devised for conducting an initial probe on the available data to see the possible actions that can be taken, initially on these two pilot villages, Loppersum and Slochteren, for detecting the potential relationship between the past damages and the seismic activity.Lifeline infrastructure, such as water mains and sewerage systems, covering our urbanised areas like a network, are most of the times, sensitive to seismic actions. This sensitivity can be in the form of extended damage during seismic events, or other collateral damages, such as what happened in Christchurch Earthquakes in 2011 in New Zealand when the sewerage system of the city was filled in with tonnes of sand due to liquefaction.Regular damage detection is one of key solutions for operational purposes. The earthquake mitigation, however, needs large scale risk studies with expected spatial distribution of damages for varying seismic hazard levels.
Within the framework of resource efficiency it is important to recycle and reusematerials, replace fossil fuel based products with bio-based alternatives and avoidthe use of toxic substances. New applications are being sought for locally grownbiomass. In the area of Groningen buildings need reinforcement to guarantee safetyfor its users, due to man-induced earthquakes. Plans are to combine the workneeded for reinforcement with the improvement of energy performance of thesebuildings. The idea is to use bio-based building materials, preferably grown andprocessed in the region.In this study it is investigated whether it is feasible to use Typha (a swap plant) as abasis for a bio-based insulation product. In order to start the activities necessary tofurther develop this idea into a commercial product and start a dedicated company,a number of important questions have to be answered in terms of feasibility. Thisstudy therefore aims at mapping economic, organisational and technical issues andassociated risks and possibilities. On the basis of these results a developmenttrajectory can be started to set up a dedicated supply chain with the appropriatepartners, research projects can be designed to develop the missing knowledge andthe required funding can be acquired.
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection. The validated product of the experiment will be tested on the monument of Fraeylemaborg.