Specific approaches are needed to reach and support people with a lower socioeconomic position (SEP) to achieve healthier eating behaviours. There is a growing body of evidence suggesting that digital health tools exhibit potential to address these needs because of its specific features that enable application of various behaviour change techniques (BCTs). The aim of this scoping review is to identify the BCTs that are used in diet-related digital interventions targeted at people with a low SEP, and which of these BCTs coincide with improved eating behaviour. The systematic search was performed in 3 databases, using terms related to e/m-health, diet quality and socioeconomic position. A total of 17 full text papers were included. The average number of BCTs per intervention was 6.9 (ranged 3–15). BCTs from the cluster ‘Goals and planning’ were applied most often (25x), followed by the clusters ‘Shaping knowledge’ (18x) and ‘Natural consequences’ (18x). Other frequently applied BCT clusters were ‘Feedback and monitoring’ (15x) and ‘Comparison of behaviour’ (13x). Whereas some BCTs were frequently applied, such as goal setting, others were rarely used, such as social support. Most studies (n = 13) observed a positive effect of the intervention on eating behaviour (e.g. having breakfast) in the low SEP group, but this was not clearly associated with the number or type of applied BCTs. In conclusion, more intervention studies focused on people with a low SEP are needed to draw firm conclusions as to which BCTs are effective in improving their diet quality. Also, further research should investigate combinations of BCTs, the intervention design and context, and the use of multicomponent approaches. We encourage intervention developers and researchers to describe interventions more thoroughly, following the systematics of a behaviour change taxonomy, and to select BCTs knowingly.
Overweight is associated with a range of negative health consequences, such as type 2 diabetes, cardiovascular disease, gastrointestinal disorders, and premature mortality. One means to combat overweight is through encouraging people to eat more slowly. People who eat quickly tend to consume more and have a higher body mass index, whereas people who eat more slowly feel satiated sooner and eat less. Unfortunately, eating rate is difficult to modify, because of its highly automatic nature. In clinical settings, researchers have had some success changing behavior by using devices that deliver feedback in real time. However, existing technologies are either too cumbersome or not engaging enough for use in daily life contexts. Training people to eat more slowly in everyday eating contexts, therefore, requires creative and engaging solutions. This article presents a qualitative evaluation of the feasibility of a smart fork to decelerate eating rate in daily life contexts. Furthermore, we outline the planned research to test the efficacy of this device in both laboratory and community settings.
LINK
Eating healthier at work can substantially promote health for office workers. However, little has been investigated on designing pervasive health interventions specialized in improving workday eating patterns. This paper presents a design study of an mHealth app called EAT@WORK, which was designed to support office workers in the Netherlands in developing healthy eating behaviors in work routines. Based on semi-structured interviews with 12 office workers from a variety of occupations, we synthesized four key features for EAT@WORK, including supporting easy access to relevant knowledge, assisting goal setting, integrating with health programs, and facilitating peer supports. The user acceptance of EAT@WORK was examined through a within-subject study with 14 office workers, followed by a qualitative study on the applicability of app features to different working contexts. Quantitative results showed that EAT@WORK was experienced more useful than a benchmark app (p < 0.01) and EAT@WORK was also perceived easier to use than the benchmark app (p < 0.01). The qualitative analysis suggested that the goal assistant feature could be valuable for different working contexts, while the integrated health program was considered more suitable for office work than telework. The social and knowledge support were expected to be on-demand features that should loosely be bonded with the working contexts. Based on these findings, we discuss design implications for the future development of such mHealth technologies to promote healthy eating routines among office workers.
LINK
In recent years, disasters are increasing in numbers, location, intensity and impact; they have become more unpredictable due to climate change, raising questions about disaster preparedness and management. Attempts by government entities at limiting the impact of disasters are insufficient, awareness and action are urgently needed at the citizen level to create awareness, develop capacity, facilitate implementation of management plans and to coordinate local action at times of uncertainty. We need a cultural and behavioral change to create resilient citizens, communities, and environments. To develop and maintain new ways of thinking has to start by anticipating long-term bottom-up resilience and collaborations. We propose to develop a serious game on a physical tabletop that allows individuals and communities to work with a moderator and to simulate disasters and individual and collective action in their locality, to mimic real-world scenarios using game mechanics and to train trainers. Two companies–Stratsims, a company specialized in game development, and Society College, an organization that aims to strengthen society, combine their expertise as changemakers. They work with Professor Carola Hein (TU Delft), who has developed knowledge about questions of disaster and rebuilding worldwide and the conditions for meaningful and long-term disaster preparedness. The partners have already reached out to relevant communities in Amsterdam and the Netherlands, including UNUN, a network of Ukrainians in the Netherlands. Jaap de Goede, an experienced strategy simulation expert, will lead outreach activities in diverse communities to train trainers and moderate workshops. This game will be highly relevant for citizens to help grow awareness and capacity for preparing for and coping with disasters in a bottom-up fashion. The toolkit will be available for download and printing open access, and for purchase. The team will offer training and facilitate workshops working with local communities to initiate bottom-up change in policy making and planning.
Dutch Cycling Intelligence (DCI) embodies all Dutch cycling knowledge to enhances customer-oriented cycling policy. Based on the data-driven cycle policy enhancement tools and knowledge of the Breda University of Applied Sciences, DCI is the next step in creating a learning community between road authorities, consultants, cycling industry, and knowledge institutes with their students. The DCI consists of three pilars:- Connecting- Accelerating knowledge- Developing knowledgeConnecting There are many stakeholders and specialists in the cycling domain. Specialists with additional knowledge about socio-cultural impacts, geo-special knowledge, and technical traffic solutions. All of these specialists need each other to ensure a perfect balance between the (electric) bicycle, the cyclist and the cycle path in its environment. DCI connects and brings together all kind of different specialists.Accelerating knowledge Many bicycle innovations take place in so-called living labs. Within the living lab, the triple helix collaboration between road authorities the industry and knowledge institutes is key. Being actively involved in state-of-the-art innovations creates an inspiring work and learning environment for students and staff. A practical example of a successful living lab is the cycle superhighway F261 between Tilburg and Waalwijk, where BUAS tested new cycle route signage. Next, the Cycling Lab F58 is created, where the road authorities Breda and Tilburg opened up physical cycling infrastructure for entrepreneurs in the bicycle domain and knowledge institutes to develop e-cycling innovation. The living labs are test environments where pilots can be carried out in practice and an excellent environment for students to conduct scientifically applied research.Developing knowledge Ultimately, data and information must be translated into knowledge. With a team of specialists and partners Breda University of applied sciences developed knowledge and tools to monitor and evaluate cycling behavior. By participating in (inter)national research programs BUAS has become one of the frontrunners in data-driven cycle policy enhancement. In close collaboration with road authorities, knowledge institutes as well as consultants, new insights and answers are developed in an international context. By an active knowledge contribution to the network of the Dutch Cycling Embassy, BUAS aims to strengthen its position and add to the global sustainability challenges. Partners: Province Noord-Brabant, Province Utrecht, Vervoerregio Amsterdam, Dutch Cycling Embassy, Tour de Force, University of Amsterdam, Technical University Eindhoven, Technical University Delft, Utrecht University, DTV Capacity building, Dat.mobility, Goudappel Coffeng, Argaleo, Stratopo, Move.Mobility Clients:Province Noord-Brabant, Province Utrecht, Province Zuid-Holland, Tilburg, Breda, Tour de Force
Een groeiende groep senioren woont steeds langer zelfstandig thuis en het is bekend dat bij deze doelgroep aandacht voor een gezond (eiwitrijk) voedingspatroon belangrijk is. Het HAS lectoraat Voeding & Gezondheid van Dr. A. Roodenburg richt zich met het onderzoeksprogramma ‘Voeding voor senioren’ op het voedingsgebruik en –gedrag van deze doelgroep. In een aantal reeds lopende projecten wordt onderzoek gedaan naar het verhogen van kennis en bewustzijn over het belang van hogere eiwitconsumptie bij deze doelgroep. Het huidige voorstel bouwt hierop voort en richt zich met name op het gedrag van senioren (aanschaf van eiwitrijke producten) en gaat onderzoeken welke factoren ten aanzien van kennis, houding en sociale druk (Theory of Planned Behavior) hierbij een rol spelen. Deze informatie kan worden ingezet om senioren te sturen op de diverse aspecten om hen zo te verleiden tot de gewenste actie (= verhogen eiwit-inname). Uitkomsten van dit onderzoek geven richting voor productontwikkeling, marketing en communicatie. Voor een sterke verbinding van onderzoek en onderwijs wordt dit onderzoek uitgevoerd door de postdoc (Dr. J Linschooten) en met diverse studententeams onder begeleiding van de postdoc. De nieuw verworven kennis zal terugkomen in het curriculum van diverse HAS opleidingen zoals Voedingsmiddelentechnologie, Food Innovation en de minor ‘Towards a Healthy Society’, als ook in een masterclass voor externe partners (bedrijven/ publieke instellingen) om bij te dragen aan een betere afstemming van het productaanbod op deze doelgroep. Het postdoc programma zal ook ruimte bieden voor een versterking van de algemene leerlijn ‘Onderzoeksvaardigheden’ om docenten en studenten van eerder genoemde opleidingen beter te begeleiden bij de ontwikkeling van deze competentie.