Research of non-contact anterior cruciate ligament (ACL) injury risk aims to identify modifiable risk factors that are linked to the mechanisms of injury. Information from these studies is then used in the development of injury prevention programmes. However, ACL injury risk research often leans towards methods with three limitations: 1) a poor preservation of the athlete-environment relationship that limits the generalisability of results, 2) the use of a strictly biomechanical approach to injury causation that is incomplete for the description of injury mechanisms, 3) and a reductionist analysis that neglects profound information regarding human movement. This current opinion proposes three principles from an ecological dynamics perspective that address these limitations. First, it is argued that, to improve the generalisability of findings, research requires a well-preserved athlete-environment relationship. Second, the merit of including behaviour and the playing situation in the model of injury causation is presented. Third, this paper advocates that research benefits from conducting non-reductionist analysis (i.e., more holistic) that provides profound information regarding human movement. Together, these principles facilitate an ecological dynamics approach to injury risk research that helps to expand our understanding of injury mechanisms and thus contributes to the development of preventative measures.
DOCUMENT
Recently several attempts were undertaken to unite the field of metaphor studies, trying to reconcile the conceptual/cognition and linguistic/discourse approaches to metaphor (Hampe, 2017b). The dynamic view of metaphor espoused by amongst others Gibbs (2017a) as a way to unify the field of metaphor studies is said to converge on findings and theoretical predictions found in cognition and discourse approaches. The author argues this focus on dynamical models to explain the multi-scale socio-cognitive aspects of metaphor as an emergent phenomenon is not robust enough. Complexity and dynamical systems are merely a modelling technique to deploy theory for empirical testing of hypotheses; a dynamic view of metaphor needs a coherent background theory to base its dynamic modelling of metaphor in action on (Chemero, 2009). I argue that it can be successfully based on the ecological-enactive framework available within the modern paradigm of 4E cognitive science. This framework makes possible explanation of both 'lower' cognition and 'higher' cognition emerging in the interaction of an organism with its environment. In addition, I sketch how recent theoretical insights from ecological-enactivism (Baggs and Chemero, 2018) concerning Gibson's notion of environment apply to the attempted unification of the field of metaphor studies. I close by suggesting how an understanding of metaphor as an ecological affordance of the socio-cultural environment can provide a rich basis for empirical hypotheses within a dynamical science of metaphor.
LINK
Indigenous rights’ relationship to ecological justice in Amazonia has not been explicitly explored in the literature. As social scientists rarely talk about violence against non-humans, this case study of conservation in Amazonia will explore this new area of concern. Ethical inquiries in conservation also engage with the manifold ways through which human and nonhuman lives are entangled and emplaced within wider ecological relationships, converging in the notion of environmental justice, which often fails to account for overt violence or exploitation of non-humans. Reflecting on this omission, this chapter discusses the applicability of engaged social science and conservation to habitat destruction in Amazonia, and broader contexts involving violence against non-humans. The questions addressed in this chapter are: is the idea of ecological justice sufficiently supported in conservation debate, and more practical Amazonian contexts? Can advocacy of inherent rights be applied to the case of non-humans? Can indigenous communities still be considered 'traditional' considering population growth and increased consumptive practices? Concluding that the existing forms of justice are inadequate in dealing with the massive scale of non-human abuse, this chapter provides directions for conservation that engage with deep ecology and ecological justice in the Amazonian context. doi: 10.1007/978-3-030-29153-2 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
As climate change accelerates, rising sea levels pose challenges for low-lying nations like the Netherlands. Floating developments (such as homes, solar parks, and pavilions) are considered the most climate adaptative solution for the future, but the effects on the environment are unknown which is holding back this floating transformation. Since public and private partners are not able to answer questions on the effect of floating urbanisation on the environment and water quality based on speculations by models without field data, permits are given only after proof that ecological & water quality will not affected (also EU warnings ‘deteriorating’ water quality (UvW 2025, EU 2025). This proposal aims to develop an innovative autonomous docking station for aquatic drones, enhancing environmental monitoring of floating structures. Only a few monitoring campaigns measured the impact of small floating structures (small structures and only basic parameters). Traditional monitoring methods rely on manual sampling and static sensors, which are costly, labour-intensive, and provide delayed results. A new study, led by Hanze with Gemeente Rotterdam, Waternet (Gemeente Amsterdam) and Indymo, will assess the impact of new large-scale floating developments with a new method. Autonomous aquatic drones improve data resolution but face operational challenges such as battery life and data retrieval. An innovating docking station will address these issues by enabling drones to recharge, offload data, and perform continuous missions without human intervention. Advanced tools—including aquatic drones, 360-degree cameras, sonar imaging, and real-time sensors—will collect high-resolution environmental data also monitoring biodiversity and bathymetry. The proposed docking station will support real-time sensor networks, allowing for spatial and temporal data collection. It will improve the (cost) efficiency and quality of long-term environmental monitoring, providing insights into water quality dynamics and underwater ecosystems in Rotterdam and Amsterdam as an international example of floating development in the battle of climate change.
Socio-economic pressures on coastal zones are on the rise worldwide, leaving increasingly less room for natural coastal change without affecting humans. The challenge is to find ways for social and natural systems to co-exist, co-develop and create synergies. The recent implementation of multi-functional, nature-based solutions (NBS) on the sandy Dutch coast seem to offer great potential in that respect. Surprisingly, the studies evaluating these innovative solutions paid little attention to how the social and natural systems interact in the NBS-modified coastal landscapes and if these interactions strengthen or weaken the primary functions of the NBS. It is not clear whether the objectives to improve coastal resilience and spatial quality will be met throughout the lifetime of the intervention. In the proposed project we will investigate the socio-bio-physical dynamics of anthropogenic sandy shores applying a Living Lab approach, documenting and analyzing interactions between evolving anthropogenic shores (Sand Motor and Hondsbossche Duinen, Fig.1) and people that use and manage these NBS-modified landscapes. Socio-bio-physical interactions will be investigated at various scales, and consequences for the long-term functionality of the NBS will be assessed, by coupling an agent-based social model and a cellular automata landscape model. By studying the behavior of the coupled system we aim to identify limits to, and optima in, multi-functionality of the NBS design, and will study how various stakeholders can influence the development of the NBS in desired directions with respect to primary NBS functions, including social and ecological goals. Together with consortium partners from public and private sectors we will co-create guidelines for management and maintenance of multifunctional NBS and design procedures and visualization tools for intervention design.