The main objective of the study is to determine if non-specific physical symptoms (NSPS) in people with self-declared sensitivity to radiofrequency electromagnetic fields (RF EMF) can be explained (across subjects) by exposure to RF EMF. Furthermore, we pioneered whether analysis at the individual level or at the group level may lead to different conclusions. By our knowledge, this is the first longitudinal study exploring the data at the individual level. A group of 57 participants was equipped with a measurement set for five consecutive days. The measurement set consisted of a body worn exposimeter measuring the radiofrequency electromagnetic field in twelve frequency bands used for communication, a GPS logger, and an electronic diary giving cues at random intervals within a two to three hour interval. At every cue, a questionnaire on the most important health complaint and nine NSPS had to be filled out. We analysed the (time-lagged) associations between RF-EMF exposure in the included frequency bands and the total number of NSPS and self-rated severity of the most important health complaint. The manifestation of NSPS was studied during two different time lags - 0–1 h, and 1–4 h - after exposure and for different exposure metrics of RF EMF. The exposure was characterised by exposure metrics describing the central tendency and the intermittency of the signal, i.e. the time-weighted average exposure, the time above an exposure level or the rate of change metric. At group level, there was no statistically significant and relevant (fixed effect) association between the measured personal exposure to RF EMF and NSPS. At individual level, after correction for multiple testing and confounding, we found significant within-person associations between WiFi (the self-declared most important source) exposure metrics and the total NSPS score and severity of the most important complaint in one participant. However, it cannot be ruled out that this association is explained by residual confounding due to imperfect control for location or activities. Therefore, the outcomes have to be regarded very prudently. The significant associations were found for the short and the long time lag, but not always concurrently, so both provide complementary information. We also conclude that analyses at the individual level can lead to different findings when compared to an analysis at group level. https://doi.org/10.1016/j.envint.2019.104948 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
MULTIFILE
Non-professional runners make extensive use of consumer-available wearable devices and smartphone apps to monitor training sessions, health, and physical performance. Despite the popularity of these products, they usually neglect subjective factors, such as psychosocial stress, unexpected daily physical (in)activity, sleep quality perception, and/or previous injuries. Consequently, the implementation of these products may lead to underperformance, reduced motivation, and running-related injuries. This paper investigates how the integration of subjective training, off-training, and contextual factors from a 24/7 perspective might lead to better individual screening and health protection methods for recreational runners. Using an online-based Ecological Momentary Assessment survey, a seven-day cohort study was conducted. Twenty participants answered daily surveys three times a day regarding subjective off-training and contextual data; e.g., health, sleep, stress, training, environment, physiology, and lifestyle factors. The results show that daily habits of people are unstructured, unlikely predictable, and influenced by factors, such as the demands of work, social life, leisure time, or sleep. By merging these factors with sensor-based data, running-related systems would be able to better assess the individual workload of recreational runners and support them to reduce their risk of suffering from running-related injuries
DOCUMENT
Background: A paradigm shift in health care from illness to wellbeing requires new assessment technologies and intervention strategies. Self-monitoring tools based on the Experience Sampling Method (ESM) might provide a solution. They enable patients to monitor both vulnerability and resilience in daily life. Although ESM solutions are extensively used in research, a translation from science into daily clinical practice is needed. Objective: To investigate the redesign process of an existing platform for ESM data collection for detailed functional analysis and disease management used by psychological assistants to the general practitioner (PAGPs) in family medicine. Methods: The experience-sampling platform was reconceptualized according to the design thinking framework in three phases. PAGPs were closely involved in co-creation sessions. In the ‘understand’ phase, knowledge about end-users’ characteristics and current eHealth use was collected (nominal group technique – 2 sessions with N = 15). In the ‘explore’ phase, the key needs concerning the platform content and functionalities were evaluated and prioritized (empathy mapping – 1 session with N = 5, moderated user testing – 1 session with N = 4). In the ‘materialize’ phase, the adjusted version of the platform was tested in daily clinical practice (4 months with N = 4). The whole process was extensively logged, analyzed using content analysis, and discussed with an interprofessional project group. Results: In the ‘understand’ phase, PAGPs emphasized the variability in symptoms reported by patients. Therefore, moment-to-moment assessment of mood and behavior in a daily life context could be valuable. In the ‘explore’ phase, (motivational) functionalities, technological performance and instructions turned out to be important user requirements and could be improved. In the ‘materialize’ phase, PAGPs encountered barriers to implement the experience-sampling platform. They were insufficiently facilitated by the regional primary care group and general practitioners. Conclusion: The redesign process in co-creation yielded meaningful insights into the needs, desires and daily routines in family medicine. Severe barriers were encountered related to the use and uptake of the experience-sampling platform in settings where health care professionals lack the time, knowledge and skills. Future research should focus on the applicability of this platform in family medicine and incorporate patient experiences.
DOCUMENT
This review offers a detailed examination of the current landscape of radio frequency (RF) electromagnetic field (EMF) assessment tools, ranging from spectrum analyzers and broadband field meters to area monitors and custom-built devices. The discussion encompasses both standardized and non-standardized measurement protocols, shedding light on the various methods employed in this domain. Furthermore, the review highlights the prevalent use of mobile apps for characterizing 5G NR radio network data. A growing need for low-cost measurement devices is observed, commonly referred to as “sensors” or “sensor nodes”, that are capable of enduring diverse environmental conditions. These sensors play a crucial role in both microenvironmental surveys and individual exposures, enabling stationary, mobile, and personal exposure assessments based on body-worn sensors, across wider geographical areas. This review revealed a notable need for cost-effective and long-lasting sensors, whether for individual exposure assessments, mobile (vehicle-integrated) measurements, or incorporation into distributed sensor networks. However, there is a lack of comprehensive information on existing custom-developed RF-EMF measurement tools, especially in terms of measuring uncertainty. Additionally, there is a need for real-time, fast-sampling solutions to understand the highly irregular temporal variations EMF distribution in next-generation networks. Given the diversity of tools and methods, a comprehensive comparison is crucial to determine the necessary statistical tools for aggregating the available measurement data.
MULTIFILE
Onze leef- en werkomgeving heeft invloed op onze gezondheid, maar het nauwkeurig bepalen van persoonlijke blootstelling aan verschillende milieufactoren blijft een uitdaging. Toch is dit wel van belang, omdat bijvoorbeeld de blootstelling aan fijnstof, stikstofdioxide en ozon jaarlijks al leidt tot 12.000 vroegtijdige sterfgevallen in Nederland (Gezondheidsraad, 2018). In werkomgevingen zijn er behalve voor de genoemde stoffen ook nog andere vluchtig organische stoffen en chemicalen waarvan de blootstelling op de korte of lange termijn tot negatieve gezondheidseffecten kan leiden. Ook fysische blootstellingen kunnen negatieve gezondheidseffecten hebben, zoals geluid, UV-straling, elektromagnetische velden en trillingen.
DOCUMENT
Occupational stress can cause health problems, productivity loss or absenteeism. Resilience interventions that help employees positively adapt to adversity can help prevent the negative consequences of occupational stress. Due to advances in sensor technology and smartphone applications, relatively unobtrusive self-monitoring of resilience-related outcomes is possible. With models that can recognize intra-individual changes in these outcomes and relate them to causal factors within the employee's context, an automated resilience intervention that gives personalized, just-in-time feedback can be developed. This paper presents the conceptual framework and methods behind the WearMe project, which aims to develop such models. A cyclical conceptual framework based on existing theories of stress and resilience is presented as the basis for the WearMe project. The operationalization of the concepts and the daily measurement cycle are described, including the use of wearable sensor technology (e.g., sleep tracking and heart rate variability measurements) and Ecological Momentary Assessment (mobile app). Analyses target the development of within-subject (n=1) and between-subjects models and include repeated measures correlation, multilevel modelling, time series analysis and Bayesian network statistics. Future work will focus on further developing these models and eventually explore the effectiveness of the envisioned personalized resilience system.
DOCUMENT
The effects of stress may be alleviated when its impact or a decreased stress-resilience are detected early. This study explores whether wearable-measured sleep and resting HRV in police officers can be predicted by stress-related Ecological Momentary Assessment (EMA) measures in preceding days and predict stress-related EMA outcomes in subsequent days. Eight police officers used an Oura ring to collect daily Total Sleep Time (TST) and resting Heart Rate Variability (HRV) and an EMA app for measuring demands, stress, mental exhaustion, and vigor during 15-55 weeks. Vector Autoregression (VAR) models were created and complemented by Granger causation tests and Impulse Response Function visualizations. Demands negatively predicted TST and HRV in one participant. TST negatively predicted demands, stress, and mental exhaustion in two, three, and five participants, respectively, and positively predicted vigor in five participants. HRV negatively predicted demands in two participants, and stress and mental exhaustion in one participant. Changes in HRV lasted longer than those in TST. Bidirectional associations of TST and resting HRV with stress-related outcomes were observed at a weak-to-moderate strength, but not consistently across participants. TST and resting HRV are more consistent predictors of stress-resilience in upcoming days than indicators of stress-related measures in prior days.
DOCUMENT
The effects of stress may be alleviated when its impact or a decreased stress-resilience are detected early. This study explores whether wearable-measured sleep and resting HRV in police officers can be predicted by stress-related Ecological Momentary Assessment (EMA) measures in preceding days and predict stress-related EMA outcomes in subsequent days. Eight police officers used an Oura ring to collect daily Total Sleep Time (TST) and resting Heart Rate Variability (HRV) and an EMA app for measuring demands, stress, mental exhaustion, and vigor during 15–55 weeks. Vector Autoregression (VAR) models were created and complemented by Granger causation tests and Impulse Response Function visualizations. Demands negatively predicted TST and HRV in one participant. TST negatively predicted demands, stress, and mental exhaustion in two, three, and five participants, respectively, and positively predicted vigor in five participants. HRV negatively predicted demands in two participants, and stress and mental exhaustion in one participant. Changes in HRV lasted longer than those in TST. Bidirectional associations of TST and resting HRV with stress-related outcomes were observed at a weak-to-moderate strength, but not consistently across participants. TST and resting HRV are more consistent predictors of stress-resilience in upcoming days than indicators of stress-related measures in prior days.
DOCUMENT
Background: Patients with chronic obstructive pulmonary disease (COPD) demonstrate reduced levels of daily physical activity (DPA) compared to healthy controls. This results in a higher risk of hospital admission and shorter survival. Performing regular DPA reduces these risks. Objective: To develop an eHealth intervention that will support patients with COPD to improve or maintain their DPA after pulmonary rehabilitation. Methods: The design process consisted of literature research and the iterative developing and piloting phases of the Medical Research Council (MRC) model for complex clinical interventions and the involvement of end users. Participants were healthy adults and persons with COPD. Results: The mobile phone interface met all the set requirements. Participants found that the app was stimulating and that reaching their DPA goals was rewarding. The mean (SD) scores on a 7-point scale for usability, ease of use, ease of learning, and contentment were 3.8 (1.8), 5.1 (1.1), 6.0 (1.6), and 4.8 (1.3), respectively. The mean (SD) correlation between the mobile phone and a validated accelerometer was 0.88 (0.12) in the final test. The idea of providing their health care professional with their DPA data caused no privacy issues in the participants. Battery life lasted for an entire day with the final version, and readability and comprehensibility of text and colors were favorable. Conclusions: By employing a user-centered design approach, a mobile phone was found to be an adequate and feasible interface for an eHealth intervention. The mobile phone and app are easy to learn and use by patients with COPD. In the final test, the accuracy of the DPA measurement was good. The final version of the eHealth intervention is presently being tested by our group for efficacy in a randomized controlled trial in COPD patients.
LINK
On duty, police officers are exposed to a variety of acute, threatening stress situations and organizational demands. In line with the allostatic load model, the resulting acute and chronic stress might have tremendous consequences for police officers’ work performance and psychological and physical health. To date, limited research has been conducted into the underlying biological, dynamic mechanisms of stress in police service. Therefore, this ecological momentary assessment study examined the associations of stress, mood and biological stress markers of a 28-year-old male police officer in a N-of-1 study over three weeks (90 data points). Four times a day (directly after waking up, 30 minutes later, 6 hours later, before going to bed), he answered questions about the perceived stress and mood using a smartphone application. With each data entry, he collected saliva samples for the later assessment of salivary cortisol (sCort) and alpha-amylase (sAA). In addition, data was collected after six police incidents during duty. sCort and sAA were not related to perceived stress in daily life and did not increase in police incidents. Regarding mood measures, deterioration of calmness, but not valence and energy was associated with perceived stress. The results suggest continued police service to constitute a major chronic stressor resulting in an inability to mount a proper response to further acute stress. As an indicator of allostatic load, psychological and biological hyporesponsivity in moments of stress may have negative consequences for police officers’ health and behavior in critical situations that require optimal performance. Prospectively, this research design may also become relevant when evaluating the efficacy of individualized stress management interventions in police training.
DOCUMENT