Background: Everyday exposure to radiofrequency electromagnetic fields (RF-EMF) emitted from wireless devices such as mobile phones and base stations, radio and television transmitters is ubiquitous. Some people attribute non-specific physical symptoms (NSPS) such as headache and fatigue to exposure to RF-EMF. Most previous laboratory studies or studies that analyzed populations at a group level did not find evidence of an association between RF-EMF exposure and NSPS. Objectives: We explored the association between exposure to RF-EMF in daily life and the occurrence of NSPS in individual self-declared electro hypersensitive persons using body worn exposimeters and electronic diaries. Methods: We selected seven individuals who attributed their NSPS to RF-EMF exposure. The level of and variability in personal RF-EMF exposure and NSPS were determined during a three-week period. Data were analyzed using timeseries analysis in which exposure as measured and recorded in the diary was correlated with NSPS. Results: We found statistically significant correlations between perceived and actual exposure to wireless internet (WiFi - rate of change and number of peaks above threshold) and base stations for mobile telecommunications (GSM+UMTS downlink, rate of change) and NSPS scores in four of the seven participants. In two persons a higher EMF exposure was associated with higher symptom scores, and in two other persons it was associated with lower scores. Remarkably, we found no significant correlations between NSPS and timeweighted average power density, the most commonly used exposure metric. Conclusions: RF-EMFexposure was associated either positively or negatively with NSP Sinsome but not all of the selected self-declared electro hypersensitive persons. https://doi.org/10.1016/j.envint.2018.08.064
MULTIFILE
Occupational stress can cause health problems, productivity loss or absenteeism. Resilience interventions that help employees positively adapt to adversity can help prevent the negative consequences of occupational stress. Due to advances in sensor technology and smartphone applications, relatively unobtrusive self-monitoring of resilience-related outcomes is possible. With models that can recognize intra-individual changes in these outcomes and relate them to causal factors within the employee's context, an automated resilience intervention that gives personalized, just-in-time feedback can be developed. This paper presents the conceptual framework and methods behind the WearMe project, which aims to develop such models. A cyclical conceptual framework based on existing theories of stress and resilience is presented as the basis for the WearMe project. The operationalization of the concepts and the daily measurement cycle are described, including the use of wearable sensor technology (e.g., sleep tracking and heart rate variability measurements) and Ecological Momentary Assessment (mobile app). Analyses target the development of within-subject (n=1) and between-subjects models and include repeated measures correlation, multilevel modelling, time series analysis and Bayesian network statistics. Future work will focus on further developing these models and eventually explore the effectiveness of the envisioned personalized resilience system.
Memory forms the input for future behavior. Therefore, how individuals remember a certain experience may be just as important as the experience itself. The peak-and-end-rule (PE-rule) postulates that remembered experiences are best predicted by the peak emotional valence and the emotional valence at the end of an experience in the here and now. The PE-rule, however, has mostly been assessed in experimental paradigms that induce relatively simple, one-dimensional experiences (e.g. experienced pain in a clinical setting). This hampers generalizations of the PE-rule to the experiences in everyday life. This paper evaluates the generalizability of the PE-rule to more complex and heterogeneous experiences by examining the PE-rule in a virtual reality (VR) experience, as VR combines improved ecological validity with rigorous experimental control. Findings indicate that for more complex and heterogeneous experiences, peak and end emotional valence are inferior to other measures (such as averaged valence and arousal ratings over the entire experiential episode) in predicting remembered experience. These findings suggest that the PE-rule cannot be generalized to ecologically more valid experiential episodes.