This paper analyses the effect of two new developments: electrification and ‘free floating’ car sharing and their impact on public space. Contrary to station based shared cars, free floating cars do not have dedicated parking or charging stations. They therefore park at public parking spots and utilize public charging stations. A proper network of public charging stations is therefore required in order to keep the free floating fleet up and running. As more municipalities are considering the introduction of an electric free floating car sharing system, the outline of such a public charging network becomes a critical piece of information. The objective of this paper is to create insights that can optimize charging infrastructure for free floating shared cars, by presenting three analyses. First, a business area analysis shows an insight into which business areas are of interest to such a system. Secondly, the parking and charging behaviour of the vehicles is further examined. The third option looks deeper into the locations and their success factors. Finally, the results of the analysis of the city of Amsterdam are used to model the city of The Hague and the impact that a free floating electric car sharing system might have on the city and which areas are the white spots that need to be filled in.
DOCUMENT
The increased adoption of electric vehicles worldwide is largely caused by the uptake of private electric cars. In parallel other segments such as busses, city logistics and taxis, are increasingly becoming electrified. Amsterdam is an interesting case, as the municipality and the taxi sector have signed a voluntary agreement to realise a full electric taxi fleet by 2025. This paper investigates the results of a survey that was distributed amongst 3000 taxi drivers to examine perceptions and attitudes on the municipal charging incentives as well as taxi ride characteristics.
MULTIFILE
In the coming decades, a substantial number of electric vehicle (EV) chargers need to be installed. The Dutch Climate Accord, accordingly, urges for preparation of regional-scale spatial programs with focus on transport infrastructure for three major metropolitan regions among them Amsterdam Metropolitan Area (AMA). Spatial allocation of EV chargers could be approached at two different spatial scales. At the metropolitan scale, given the inter-regional flow of cars, the EV chargers of one neighbourhood could serve visitors from other neighbourhoods during days. At the neighbourhood scale, EV chargers need to be allocated as close as possible to electricity substations, and within a walkable distance from the final destination of EV drivers during days and nights, i.e. amenities, jobs, and dwellings. This study aims to bridge the gap in the previous studies, that is dealing with only of the two scales, by conducting a two-phase study on EV infrastructure. At the first phase of the study, the necessary number of new EV chargers in 353 4-digit postcodes of AMA will be calculated. On the basis of the findings of the Phase 1, as a case study, EV chargers will be allocated at the candidate street parking locations in the Amsterdam West borough. The methods of the study are Mixed-integer nonlinear programming, accessibility and street pattern analysis. The study will be conducted on the basis of data of regional scale travel behaviour survey and the location of dwellings, existing chargers, jobs, amenities, and electricity substations.
Stedelijke regio’s streven naar een duurzame mobiliteitstransitie. Deze ambitie staat echter op gespannen voet met het hoge autobezit- en autogebruik. De stormachtige introductie van lichte elektrische voertuigen, oftewel LEVs (denk aan e-scooters, e-steps, e-(cargo)bikes en micro-cars) leek een belangrijke ‘gamechanger’ te zijn. Deze LEVs zijn namelijk klein en efficiënt, zijn nagenoeg emissievrij, bieden mogelijkheden voor het verbeteren van het voor- en natransport van het openbaar vervoer (OV) en worden bovendien door hun gebruikers als prettig ervaren tijdens het reizen.Tot op heden maken LEVs deze beloften echter onvoldoende waar. Bij de introductie, thans met name in de vorm van deelsystemen, komen diverse uitdagingen aan het licht zoals: 1) verrommeling en overlast door verkeerd gepareerde LEVs, 2) ongewenste substitutie van loop-, fiets- en OV-verplaatsingen en beperkte impact op autogebruik en 3) en zorgen over de verkeersveiligheid en beleving, met name op de (al steeds drukker wordende) fietsinfrastructuur in Nederland. Deze problemen komen mede voort uit de snelle introductie waardoor gemeenten achter de feiten aanliepen en geen gericht beleid konden voeren. Langzaam komen we nu in een periode van stabilisatie en regulering maar een doorontwikkeling naar pro-actief LEV beleid is nodig om de potentie van LEVs voor de mobiliteitstransitie te ondersteunen. Het LEVERAGE-consortium, bestaande uit sterke partners uit de triple helix, gaat daarom aan de slag met deze vraagstukken. De centrale onderzoeksvraag is:Wat is de potentie van LEVs voor de mobiliteitstransitie naar bereikbare, duurzame, verkeersveilige, inclusieve en leefbare stedelijke regio’s en hoe kan deze optimaal worden benut door een betere integratie van LEVs in het mobiliteitssysteem en het mobiliteitsbeleid en door een effectieve governance van de samenwerking tussen publieke en private stakeholders?Om deze vraag te beantwoorden heeft het consortium een ambitieus en innovatieve onderzoeksopzet gedefinieerd waarbij veel nadruk wordt gelegd op de disseminatie en exploitatie van kennis in de beleidspraktijk.Collaborative partnersProvincie Noord-Brabant, Metropoolregio Arnhem-Nijmegen, Gemeente Eindhoven, Gemeente Breda, Gemeente Arnhem, Ministerie I&W, Rijkswaterstaat, Arriva, PON, Check, Citysteps, Cenex, TIER, We-all-Wheel, Fleet investment, Goudappel, Kennisinstellingen en netwerkorganisaties, HAN, TU/e, CROW, Connekt, POLIS, SWOV.