With the rise of the number of electric vehicles, the installment of public charging infrastructure is becoming more prominent. In urban areas in which EV users rely on on-street parking facilities, the demand for public charging stations is high. Cities take on the role of implementing public charging infrastructure and are looking for efficient roll-out strategies. Municipalities generally reserve the parking spots next to charging stations to ensure their availability. Underutilization of these charging stations leads to increased parking pressure, especially during peak hours. The city of The Hague has therefore implemented daytime reservation of parking spots next to charging stations. These parking spots are exclusively available between 10:00 and 19:00 for electric vehicles and are accessible for other vehicles beyond these times. This paper uses a large dataset with information on nearly 40.000 charging sessions to analyze the implementation of the abovementioned scheme. An unique natural experiment was created in which charging stations within areas of similar parking pressure did or did not have this scheme implemented. Results show that implemented daytime charging 10-19 can restrict EV owners in using the charging station at times when they need it. An extension of daytime charging to 10:00-22:00 proves to reduce the hurdle for EV drivers as only 3% of charging sessions take place beyond this time. The policy still has the potential to relieve parking pressure. The paper contributes to the knowledge of innovative measures to stimulate the optimized rollout and usage of charging infrastructure.
Electric vehicles have penetrated the Dutch market, which increases the potential for decreased local emissions, the use and storage of sustainable energy, and the roll-out and use of electric car-sharing business models. This development also raises new potential issues such as increased electricity demand, a lack of social acceptance, and infrastructural challenges in the built environment. Relevant stakeholders, such as policymakers and service providers, need to align their values and prioritize these aspects. Our study investigates the prioritization of 11 Dutch decision-makers in the field of public electric vehicle charging. These decision-makers prioritized different indicators related to measurements (e.g., EV adoption rates or charge point profitability), organization (such as fast- or smart-charging), and developments (e.g., the development of mobility-service markets) using the best-worst method. The indicators within these categories were prioritized for three different scenario's in time. The results reveal that priorities will shift from EV adoption and roll-out of infrastructure to managing peak demand, using more sustainable charging techniques (such as V2G), and using sustainable energy towards 2030. Technological advancements and autonomous charging techniques will become more relevant in a later time period, around 2040. Environmental indicators (e.g., local emissions) were consistently valued low, whereas mobility indicators were valued differently across participants, indicating a lack of consensus. Smart charging was consistently valued higher than other charging techniques, independent of time period. The results also revealed that there are some distinct differences between the priorities of policymakers and service providers. Having a systematic overview of what aspects matter supports the policy discussion around EVs in the built environment.
Electric vehicles and renewable energy sources are collectively being developed as a synergetic implementation for smart grids. In this context, smart charging of electric vehicles and vehicle-to-grid technologies are seen as a way forward to achieve economic, technical and environmental benefits. The implementation of these technologies requires the cooperation of the end-electricity user, the electric vehicle owner, the system operator and policy makers. These stakeholders pursue different and sometime conflicting objectives. In this paper, the concept of multi-objective-techno-economic-environmental optimisation is proposed for scheduling electric vehicle charging/discharging. End user energy cost, battery degradation, grid interaction and CO2 emissions in the home micro-grid context are modelled and concurrently optimised for the first time while providing frequency regulation. The results from three case studies show that the proposed method reduces the energy cost, battery degradation, CO2 emissions and grid utilisation by 88.2%, 67%, 34% and 90% respectively, when compared to uncontrolled electric vehicle charging. Furthermore, with multiple optimal solutions, in order to achieve a 41.8% improvement in grid utilisation, the system operator needs to compensate the end electricity user and the electric vehicle owner for their incurred benefit loss of 27.34% and 9.7% respectively, to stimulate participation in energy services.
In the autumn of 2020, an autonomous and electric delivery robot was deployed on the BUas campus for the distribution of goods. In addition to the actual field test of the robot, we conducted research into various aspects of autonomous delivery robots. In this contribution we discuss the test with the autonomous delivery robot itself, the adjustments we had to make because the campus was very quiet due to COVID-19 and therefore there was less to transport for the robot, and the perception of people. with regard to the delivery robot, on the possible future areas of application and on the learning experiences we have gained in the tests.