Electrification of mobility exceeds personal transport to increasingly focus on particular segments such as city logistics and taxis. These commercial mobility segments have different motives to purchase a full electric vehicle and require a particular approach to incentivize and facilitate the transition towards electric mobility. A case where a municipality was successful in stimulating the transition to electric mobility is the taxi sector in the city of Amsterdam. Using results from a survey study (n = 300), this paper analyses the differences in characteristics between taxi drivers that either have or do not have interest in purchasing a full electric taxi vehicle. Results show a low intention across the sample to adopt a full electric vehicle and no statistically significant differences in demographics between the two groups. Differences were found between the level of acceptability of the covenant, the rated attractiveness of the incentives, the ratings of full electric vehicle attributes and the consultation of objective and social information sources. These results can be used by policy makers to develop new incentives that target specific topics currently influencing the interest in a full electric taxi vehicle.
DOCUMENT
Fast charging is seen as a means to facilitate long-distance driving for electric vehicles (EVs). As a result, roll-out planning generally takes a corridor approach. However, with higher penetration of electric vehicles in urban areas, cities contemplate whether inner-city fast chargers can be an alternative for the growing amount of slow public chargers. For this purpose, more knowledge is required in motives and preferences of users and actual usage patterns of fast chargers. Similarly, with increasing charging speeds of fast chargers and different modes (taxi, car sharing) also switching to electric vehicles, the effect of charging speed should be evaluated as well as preferences amongst different user groups. This research investigates the different intentions and motivations of EV drivers at fast charging stations to see how charging behaviour at such stations differs using both data analysis from charging stations as a survey among EV drivers. Additionally, it estimates the willingness of EV drivers to use fast charging as a substitute for on-street home charging given higher charging speeds. The paper concludes that limited charging speeds imply that EV drivers prefer parking and charging over fast charging but this could change if battery developments allow higher charging speeds.
DOCUMENT
Electric vehicles and renewable energy sources are collectively being developed as a synergetic implementation for smart grids. In this context, smart charging of electric vehicles and vehicle-to-grid technologies are seen as a way forward to achieve economic, technical and environmental benefits. The implementation of these technologies requires the cooperation of the end-electricity user, the electric vehicle owner, the system operator and policy makers. These stakeholders pursue different and sometime conflicting objectives. In this paper, the concept of multi-objective-techno-economic-environmental optimisation is proposed for scheduling electric vehicle charging/discharging. End user energy cost, battery degradation, grid interaction and CO2 emissions in the home micro-grid context are modelled and concurrently optimised for the first time while providing frequency regulation. The results from three case studies show that the proposed method reduces the energy cost, battery degradation, CO2 emissions and grid utilisation by 88.2%, 67%, 34% and 90% respectively, when compared to uncontrolled electric vehicle charging. Furthermore, with multiple optimal solutions, in order to achieve a 41.8% improvement in grid utilisation, the system operator needs to compensate the end electricity user and the electric vehicle owner for their incurred benefit loss of 27.34% and 9.7% respectively, to stimulate participation in energy services.
DOCUMENT
In the autumn of 2020, an autonomous and electric delivery robot was deployed on the BUas campus for the distribution of goods. In addition to the actual field test of the robot, we conducted research into various aspects of autonomous delivery robots. In this contribution we discuss the test with the autonomous delivery robot itself, the adjustments we had to make because the campus was very quiet due to COVID-19 and therefore there was less to transport for the robot, and the perception of people. with regard to the delivery robot, on the possible future areas of application and on the learning experiences we have gained in the tests.