The transition from diesel-driven urban freight transport towards more electric urban freight transport turns out to be challenging in practice. A major concern for transport operators is how to find a reliable charging strategy for a larger electric vehicle fleet that provides flexibility based on different daily mission profiles within that fleet, while also minimizing costs. This contribution assesses the trade-off between a large battery pack and opportunity charging with regard to costs and operational constraints. Based on a case study with 39 electric freight vehicles that have been used by a parcel delivery company and a courier company in daily operations for over a year, various scenarios have been analyzed by means of a TCO analysis. Although a large battery allows for more flexibility in planning, opportunity charging can provide a feasible alternative, especially in the case of varying mission profiles. Additional personnel costs during opportunity charging can be avoided as much as possible by a well-integrated charging strategy, which can be realized by a reservation system that minimizes the risk of occupied charging stations and a dense network of charging stations.
MULTIFILE
Within the FREVUE project 80 fully electric freight vehicles have been deployed. It showed that city logistics operations can be performed by electric freight vehicles, but that at the moment the high vehicle purchasing costs are still a barrier for large scale utilisation of electric freight vehicles for logistics operations. Only for small EFVs (lighter than 3.5 tons) a short term feasible business case is possible. For the larger vans and rigid trucks, a feasible business case is not yet possible from an operator’s perspective, often not even with subsidies. Copyright © 2018 Society of Automotive Engineers of Japan, Inc. All rights reserved
DOCUMENT
Purpose Electric freight vehicles (EFVs) are one of the solutions to improve city logistics’ sustainability. EFVs, that are electric powered light and heavy vehicles with a number plate, have the potential to make zero emission city logistics possible within the urban area. However, although trials have been undertaken for the last years, large-scale usage of EFVs in city logistics does not occur yet. EFVs are technically possi- ble, but the implementation of EFVs in practice is relatively limited. Design This chapter examines by reviewing current and past EFV implementations, what are the challenges, barriers and success factors for EFVs in city logistics operations. EFVs have especially positive envir- onmental effects, but are overall usually more expensive (especially in procurement) than conventional vehicles. Besides, other technical and operational issues remain to be solved, and many uncertainties still exist on long-term usage. Findings Three main barriers for large-scale EFV uptake are identi- fied. The current logistics concepts are developed for conventional vehi- cles and should be redesigned to fit EFVs better. Local authorities’ support is essential in order to find a positive (or not too negative) business case. And EFV implementation requires companies that want to be sustainable. This contribution presents examples of how some companies or authorities deal with these barriers. Value This chapter concludes by identifying elements that are necessary for acceleration of EFV uptake in city logistics operations.
LINK
This paper examines the feasibility of using electric powered vehicles in urban freight transport from a carrier's perspective, including their attitudes towards electric freight vehicles (EFVs) and all relevant elements affecting this business case, such as: technological features, existing restricting and promoting policies, financial and non-financial incentives, type of operations, urban settings and logistics organization. We look at the business cases for different truck sizes, varying from small vans to large trucks, in relation to the logistics requirements. This contribution combines the relevant urban freight transport solution directions: technology (both for the vehicle and the supporting IT), logistics and policy. The attitudes of the different EFVs user groups are also taken into account. Only if all these elements support each other, a feasible case can be possible at this moment. We look at the current business case and make conclusions on where it is necessary to act in the near future in order to increase an uptake of electric freight vehicles. For this analysis we use the data collected from current demonstrations that are actually running in the European FP7 project FREVUE, which includes over 100 electric-powered vehicles in the cities of Amsterdam, Lisbon, London, Madrid, Milan, Oslo, Rotterdam, and Stockholm. This data includes operational, attitudinal and financial data for the before situation in which conventional vehicles were used and for the first year(s) where electric vehicles were operated. © 2016 The Authors.
LINK
This paper discusses the current developments, as well as the barriers and opportunities for using electric freight vehicles in daily city logistics operations based on the experiences from a number of running demonstrations. This paper discusses results from other studies and demonstrations that were published on electro mobility in city logistics in the last three years, as an update of an earlier state of the art review. Next, we present recent narratives based on the more than 100 electric freight vehicles (EFVs) deployed in the European project FREVUE and the experiences of TransMission in using four battery electric Cargohoppers to perform their urban deliveries in Amsterdam. Over the years the attention shifted from a focus on the limitations of EFVs in comparison to conventional vehicles, such as the limited range, towards the question how to better adapt the operations to deal with the EFV characteristics. Although, the business case for using EFVs, in comparison to conventional vehicles, is still suffering from high vehicle purchase price and uncertainty about its residual value, the use of EFVs in daily operations shows that in the majority of cases the current generation of EFVs have a good technical performance. Companies using EFVs are generally satisfied with these vehicles. Obviously still a number of barriers has to be levelled, but large scale EFV usage seems more feasible than before. © 2016 Published by Elsevier B.V.
LINK
The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the liveability of cities. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can manoeuvre easily and free from polluting emissions. Within the two-year LEVV-LOGIC project, (2016-2018) the use of light electric freight vehicles (LEFVs) for city logistics is explored. The project combines expertise on logistics, vehicle design, charging infrastructure and business modelling to find the optimal concept. This paper presents guidelines for the design of LEFV based on the standardized rolling container (length 800 mm, width 640 mm, height 1600 mm) and for the charging infrastructure.
DOCUMENT
The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the livability of cities. Freight vehicles are large contributors to polluting air and CO2 emissions and generate problems in terms of safety, noise and loss of public space. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can maneuver easily and do not emit local pollution. There is an increasing interest in these vehicle, called light electric freight vehicles (LEFV’s), among logistic service providers in European cities. However, various technical and operational challenges impede large scale implementation. Within the two-year LEVV-LOGIC project, (2016-2018) the use of LEFV’s for city logistics is explored. The project combines expertise on logistics, vehicle design, charging infrastructure and business modelling to find the optimal concept in which LEFV’s can be a financial competitive alternative for conventional freight vehicles. This contribution to EVS30 will present the project’s first year results, showing the guideline for and the applied design of LEFV for future urban city logistics.
DOCUMENT
The demand for the transport of goods within the city is rising and with that the number of vans driving around. This has adverse effects on air quality, noise, safety and liveability in the city. LEFVs (Light Electric Freight Vehicles) offer a potential solution for this. There is already a lot of enthusiasm for the LEFVs and several companies have started offering the vehicles. Still many companies are hesitating to start and experience. New knowledge is needed of logistics concepts for the application of LEFVs. This paper shows the outcomes of eight case studies about what is needed to successfully deploy LEFVs for city logistics.
DOCUMENT
The number of light commercial vehicles in cities is growing, which puts increasing pressure on the liveability of cities. Light electric freight vehicles (LEFV) and cargo bikes can offer a solution, as they occupy less space, can be manoeuvred easily and does not emit tailpipe pollutants. This paper presents the results of the first half-year of the LEVV-LOGIC project (2016-2018), aimed at exploring the potential of LEFVs for various urban freight flows. Delivery characteristics, trends, practical examples and the judgement of experts are combined to assess the potential of LEFVs for seven major urban freight flows. The preliminary analysis concludes that every urban freight flow has a certain level of potential for using LEFV. In particular parcel and food deliveries have high potential; however, deliveries related to services and the last phase of construction work can also be switched to LEFV. In comparison, non-food deliveries to retail establishments and the collection of waste collection have less potential. Though the latter can change when recycling standards become higher.
DOCUMENT
Innovative logistics service providers are currently looking for possibilities to introduce electric vehicles for goods distribution. As electrical vehicles still suffer from a limited operation range, the logistical process faces important challenges. In this research we advise on the composition of the electrical vehicle fleet and on the configuration of the service network, to achieve a successful implementation of electric vehicles in the innercity of Amsterdam. Additional question in our research is whether the CO2 emission reduces at all or might even increase due to an increase of tripkilometres as a consequence of mileage constraints by the batteries. The aim of the implementation of the research is to determine the ideal fleet to transport a known demand of cargo, located at a central depot, to a known set of recipients using vehicles of varying types. The problem can be classified as a Fleet Size and Mix Vehicle Routing Problem (FSMVRP). In addition to the regular constraints that apply to the regular FSMVRP, in our case also time windows apply to the cargo that needs to be transported (FSMVRPTW). The operation range of the vehicles is constrained by the battery capacity. We suggest modifications to existing formulations of the FSMVRPTW to make it suitable for the application on cases with electrical vehicles. We apply the model to create an optimal fleet configuration and the service routes. In our research case of the Cargohopper in Amsterdam, the performance of alternative fleet compositions is determined for a variety of scenarios, to assess their robustness. The main uncertainties addressed in the scenarios are the cargo composition, the operation range of the vehicles and their operation speed. Based on our research findings in Amsterdam we conclude that the current generation of electric vehicles as a part of urban consolidation concept have the ability to perform urban freight transport efficiently (19% reduction in vehicle kilometres) and meanwhile have the capability to improve air quality and reduce CO2-emissions by 90%, and reduce noise nuisance in the inner cities of our (future) towns.
LINK