In the Interreg Smart Shared Green Mobility Hubs project, electric shared mobility is offered through eHUBs in the city. eHUBs are physical places inneighbourhoods where shared mobility is offered, with the intention of changing citizens’ travel behaviour by creating attractive alternatives to private car use.In this research, we aimed to gain insight into psychological factors that influence car owners’ intentions to try out shared electric vehicles from an eHUB in order to ascertain:1. The psychological factors that determine whether car owners are willing to try out shared electric modalities in the eHUBs and whether these factors are identical for cities with different mobility contexts.2. How these insights into psychological determinants can be applied to entice car owners to try out shared electric modalities in the eHUBs.Research was conducted in two cities: Amsterdam (the Netherlands) and Leuven (Belgium). An onlinesurvey was distributed to car owners in both cities inSeptember 2020 and, additionally, interviews wereheld with 12 car owners in each city.In general, car owners from Amsterdam and Leuven seem positive about the prospect of having eHUBs in their cities. However, they show less interest inusing the eHUBs themselves, as they are satisfied with their private car, which suits their mobility needs. Car owners mentioned the following reasons for notbeing interested in trying out the eHUBs: they simply do not see a need to do so, the costs involved with usage, the need to plan ahead, the expected hasslewith registration and ‘figuring out how it works’, having other travel needs, safety concerns, having to travel a distance to get to the vehicle, and a preferencefor ownership. Car owners who indicated that they felt neutral, or that they were likely to try out an eHUB, mentioned the following reasons for doing so:curiosity, attractive pricing, convenience, not owning a vehicle like those offered in an eHUB, environmental concerns, availability nearby, and necessity when theirown vehicle is unavailable.In both cities, the most important predictor determining car owners’ intention to try out an eHUB is the perceived usefulness of trying out an eHUB.In Amsterdam, experience with shared mobility and familiarity with the concept were the second and third factors determining car owners’ interest in tryingout shared mobility. In Leuven, pro-environmental attitude was the second factor determining car owners’ openness to trying out the eHUBs, and agewas the third factor, with older car owners being less likely to try one out.Having established that perceived usefulness was the most important determinant for car owners to try out shared electric vehicles from an eHUB, weconducted additional research, which showed that, in both cities, three factors contribute to perceived usefulness, in order of relevance: (1) injunctive norms(e.g., perceiving that society views trying out eHUBs as correct behaviour); (2) trust in shared electric mobility as a solution to problems in the city (e.g., expecting private car owners’ uptake of eHUBs to contributeto cleaner air, reduce traffic jams in city, and combat climate change); and (3) trust in the quality and safety of the vehicles, including the protection of users’privacy. In Amsterdam specifically, two additional factors contributed to perceived usefulness of eHUBs: drivers’ confidence in their capacity to try out anunfamiliar vehicle from the eHUB and experience of travelling in various modes of transport.Drawing on the relevant literature, the results of our research, and our behavioural expertise, we make the following recommendations to increase car users’ uptake of shared e-mobility:1. Address car owners’ attentional bias, which filters out messages on alternative transport modes.2. Emphasise benefits of (trying out) shared mobility from different perspectives so that multiple goals can be addressed.3. Change the environment and the infrastructure, as infrastructure determines choice of transport.4. For Leuven specifically: target younger car owners and car owners with high pro-environmental attitudes.5. For Amsterdam specifically: provide information on eHUBs and opportunities for trying out eHUBs.
MULTIFILE
Global climate agreements call for action and an integrated perspective on mobility, energy and overall consumption. Municipalities in dense, urban areas are challenged with facilitating this transition with limited space and energy resources, and with future uncertainties. One important aspect of the transition is the adoption of electric vehicles, which includes the adequate design of charging infrastructure. Another important goal is a modal shift in transportation. This study investigated over 80 urban mobility policy measures that are in the policy roadmap of two of the largest municipalities of the Netherlands. This analysis consists of an inventory of policy measures, an evaluation of their environmental effects and conceptualizations of the policy objectives and conditions within the mobility transitions. The findings reveal that the two municipalities have similarities in means, there is still little anticipation of future technology and policy conditions could be further satisfied by introducing tailored measures for specific user groups.
DOCUMENT
Electric vehicles have penetrated the Dutch market, which increases the potential for decreased local emissions, the use and storage of sustainable energy, and the roll-out and use of electric car-sharing business models. This development also raises new potential issues such as increased electricity demand, a lack of social acceptance, and infrastructural challenges in the built environment. Relevant stakeholders, such as policymakers and service providers, need to align their values and prioritize these aspects. Our study investigates the prioritization of 11 Dutch decision-makers in the field of public electric vehicle charging. These decision-makers prioritized different indicators related to measurements (e.g., EV adoption rates or charge point profitability), organization (such as fast- or smart-charging), and developments (e.g., the development of mobility-service markets) using the best-worst method. The indicators within these categories were prioritized for three different scenario's in time. The results reveal that priorities will shift from EV adoption and roll-out of infrastructure to managing peak demand, using more sustainable charging techniques (such as V2G), and using sustainable energy towards 2030. Technological advancements and autonomous charging techniques will become more relevant in a later time period, around 2040. Environmental indicators (e.g., local emissions) were consistently valued low, whereas mobility indicators were valued differently across participants, indicating a lack of consensus. Smart charging was consistently valued higher than other charging techniques, independent of time period. The results also revealed that there are some distinct differences between the priorities of policymakers and service providers. Having a systematic overview of what aspects matter supports the policy discussion around EVs in the built environment.
DOCUMENT
Electrification of mobility exceeds personal transport to increasingly focus on particular segments such as city logistics and taxis. These commercial mobility segments have different motives to purchase a full electric vehicle and require a particular approach to incentivize and facilitate the transition towards electric mobility. A case where a municipality was successful in stimulating the transition to electric mobility is the taxi sector in the city of Amsterdam. Using results from a survey study (n = 300), this paper analyses the differences in characteristics between taxi drivers that either have or do not have interest in purchasing a full electric taxi vehicle. Results show a low intention across the sample to adopt a full electric vehicle and no statistically significant differences in demographics between the two groups. Differences were found between the level of acceptability of the covenant, the rated attractiveness of the incentives, the ratings of full electric vehicle attributes and the consultation of objective and social information sources. These results can be used by policy makers to develop new incentives that target specific topics currently influencing the interest in a full electric taxi vehicle.
DOCUMENT
This study aims to evaluate the effect in the energy network of a big shared of decarbonise vehicles (NGV and EV) based on car-use profiles of current conventional and electric vehicles in the city of Groningen. Charging profiles were developed within CBS dataset of mobility and transport, and the electric charging profiles provided by E-Laad.
DOCUMENT
This toolkit, originating from the research group Psychology for Sustainable Cities, Amsterdam University of Applied Sciences (AUAS), contains materials that help to promote behavioural change in relation to electric shared transport based in onstreet e-Mobility hubs (eHUBs). Behavioural knowledge is an essential ingredient for the successful implementation of eHUBs. Because behaviour is very dependent on the target group’s capabilities and motivation and on the social and physical context in which behaviour takes place, the research group has developed materials that municipalities can use to design a tailor-made eHUBs promotion intervention that suits their own situation. Therefore, practical examples and insights from earlier research are shared with regard to stimulating the use of eHUBs.
DOCUMENT
This study focuses on the feasibility of electric aircraft operations between the Caribbean islands of Aruba, Bonaire, and Curaçao. It explores the technical characteristics of two different future electric aircraft types (i.e., Alice and ES-19) and compares their operational requirements with those of three conventional types currently in operation in the region. Flight operations are investigated from the standpoint of battery performance, capacity, and consumption, while their operational viability is verified. In addition, the CO2 emissions of electric operations are calculated based on the present energy mix, revealing moderate improvements. The payload and capacity are also studied, revealing a feasible transition to the new types. The impact of the local climate is discussed for several critical components, while the required legislation for safe operations is explored. Moreover, the maintenance requirements and costs of electric aircraft are explored per component, while charging infrastructure in the hub airport of Aruba is proposed and discussed. Overall, this study offers a thorough overview of the opportunities and challenges that electric aircraft operations can offer within the context of this specific islandic topology.
MULTIFILE
With the rise of the number of electric vehicles, the installment of public charging infrastructure is becoming more prominent. In urban areas in which EV users rely on on-street parking facilities, the demand for public charging stations is high. Cities take on the role of implementing public charging infrastructure and are looking for efficient roll-out strategies. Municipalities generally reserve the parking spots next to charging stations to ensure their availability. Underutilization of these charging stations leads to increased parking pressure, especially during peak hours. The city of The Hague has therefore implemented daytime reservation of parking spots next to charging stations. These parking spots are exclusively available between 10:00 and 19:00 for electric vehicles and are accessible for other vehicles beyond these times. This paper uses a large dataset with information on nearly 40.000 charging sessions to analyze the implementation of the abovementioned scheme. An unique natural experiment was created in which charging stations within areas of similar parking pressure did or did not have this scheme implemented. Results show that implemented daytime charging 10-19 can restrict EV owners in using the charging station at times when they need it. An extension of daytime charging to 10:00-22:00 proves to reduce the hurdle for EV drivers as only 3% of charging sessions take place beyond this time. The policy still has the potential to relieve parking pressure. The paper contributes to the knowledge of innovative measures to stimulate the optimized rollout and usage of charging infrastructure.
DOCUMENT
The increased adoption of electric vehicles worldwide is largely caused by the uptake of private electric cars. In parallel other segments such as busses, city logistics and taxis, are increasingly becoming electrified. Amsterdam is an interesting case, as the municipality and the taxi sector have signed a voluntary agreement to realise a full electric taxi fleet by 2025. This paper investigates the results of a survey that was distributed amongst 3000 taxi drivers to examine perceptions and attitudes on the municipal charging incentives as well as taxi ride characteristics.
MULTIFILE
Underutilised charging stations can be a bottleneck in the swift transition to electric mobility. This study is the first to research cooperative behaviour at public charging stations as a way to address improved usage of public charging stations. It does so by viewing public charging stations as a common-pool resource and explains cooperative behaviour from an evolutionary perspective. Current behaviour is analysed using a survey (313 useful responses) and an analysis of large dataset (2.1 million charging sessions) on the use of public charging infrastructure in Amsterdam, The Netherlands. In such a way it identifies the potential, drivers and possible obstacles that electric vehicle drivers experience when cooperating with other drivers to optimally make use of existing infrastructure. Results show that the intention to show direct reciprocal charging behaviour is high among the respondents, although this could be limited if the battery did not reach full or sufficient state-of-charge at the moment of the request. Intention to show direct reciprocal behaviour is mediated by kin and network effects.
MULTIFILE