The authors used the INFRASTRATEGO simulation game to examine strategic behavior in a liberalizing electricity market and the effectiveness of different regulatory regimes in dealing with this strategic behavior. The game simulates the Dutch electricity market in the years 2002 to 2006. The game was played eight times with about 400 players, both professionals and students. Two regulatory regimes defined by (a) the policy-making model and (b) the regulation by negotiation model were evaluated. The authors found several patterns of strategic behavior such as regulatory capture, sometimes with rather disturbing effects with regard to the settlement of rates and long-term capacity planning.
DOCUMENT
Peer-to-peer (P2P) energy trading has been recognized as an important technology to increase the local self-consumption of photovoltaics in the local energy system. Different auction mechanisms and bidding strategies haven been investigated in previous studies. However, there has been no comparatively analysis on how different market structures influence the local energy system’s overall performance. This paper presents and compares two market structures, namely a centralized market and a decentralized market. Two pricing mechanisms in the centralized market and two bidding strategies in the decentralized market are developed. The results show that the centralized market leads to higher overall system self-consumption and profits. In the decentralized market, some electricity is directly sold to the grid due to unmatchable bids and asks. Bidding strategies based on the learning algorithm can achieve better performance compared to the random method.
DOCUMENT
The SynergyS project aims to develop and assess a smart control system for multi-commodity energy systems (SMCES). The consortium, including a broad range of partners from different sectors, believes a SMCES is better able to incorporate new energy sources in the energy system. The partners are Hanze, TU Delft, University of Groningen, TNO, D4, Groningen Seaports, Emerson, Gain Automation Technology, Energy21, and Enshore. The project is supported by a Energy Innovation NL (topsector energie) subsidy by the Ministry of Economic Affairs.Groningen Seaports (Eemshaven, Chemical Park Delfzijl) and Leeuwarden are used as case studies for respectively an industrial and residential cluster. Using a market-based approach new local energy markets have been developed complementing the existing national wholesale markets. Agents exchange energy using optimized bidding strategies, resulting in better utilization of the assets in their portfolio. Using a combination of digital twins and physical assets from two field labs (ENTRANCE, The Green Village) performance of the SMCES is assessed. In this talk the smart multi-commodity energy system is presented, as well as some first results of the assessment. Finally an outlook is given how the market-based approach can benefit the development of energy hubs.
LINK
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.