Poster presentation: decentralized gas storage.
DOCUMENT
The future energy system could benefit from the integration of independent gas, heat and electricity infrastructures. Such a hybrid energy network could support the increase of intermittent renewable energy sources by offering increased operational flexibility. Nowadays, the expectations on Natural Gas resources forecast an increase in the application of Liquefied Natural Gas (LNG), as a means of storage and transportation, which has a high exergy value. Therefore, we analyzed the integration of decentralized LNG regasification with a Waste-to-Energy (W2E) plant for a practice-based case to get an idea on how it might affect the balancing of supply and demand, under optimized exergy efficient conditions. We compared an independent system with an integrated system that consists of the use of the LNG cold to cool the condenser of the W2E plant, as well as the expansion of the regasified LNG in an expander, using a simplified deterministic model based on the energy hub concept. We use the hourly measured electricity and heat demand patterns for 200 households with 35% of the households producing electricity from PV according to a typical measured solar insolation pattern in The Netherlands. The results indicate that the integration affects the imbalance for electricity and heat compared to the independent system. If the electricity demand is met, both the total yearly heat shortage and heat excess are reduced for the integrated system. If the heat demand is met, the total yearly electricity shortage is also reduced (with 100 MWh). However, the total yearly electricity excess is then increased (with 300 MWh). We observed that these changes are solely due to the increase in exergy efficiencies for heat and electricity of the W2E Rankine cycle. The efficiency of the expander is too low to offer a significant contribution to the electricity demand. Therefore, future research should focus on the affect that can be obtained by to other means of integration (e.g. Organic Rankine Cycle and Stirling Cycle).
DOCUMENT
The future energy system could benefit from the integration of independent gas, heat and electricity infrastructures. Such a hybrid energy network could support the increase of intermittent renewable energy sources by offering increased operational flexibility. Nowadays, the expectations on Natural Gas resources forecast an increase in the application of Liquefied Natural Gas (LNG), as a means of storage and transportation, which has a high exergy value. Therefore, we analyzed the integration of decentralized LNG regasification with a Waste-to-Energy (W2E) plant for a practice-based case to get an idea on how it might affect the balancing of supply and demand, under optimized exergy efficient conditions. We compared an independent system with an integrated system that consists of the use of the LNG cold to cool the condenser of the W2E plant, as well as the expansion of the regasified LNG in an expander, using a simplified deterministic model based on the energy hub concept. We use the hourly measured electricity and heat demand patterns for 200 households with 35% of the households producing electricity from PV according to a typical measured solar insolation pattern in The Netherlands. The results indicate that the integration affects the imbalance for electricity and heat compared to the independent system. If the electricity demand is met, both the total yearly heat shortage and heat excess are reduced for the integrated system. If the heat demand is met, the total yearly electricity shortage is also reduced (with 100 MWh). However, the total yearly electricity excess is then increased (with 300 MWh). We observed that these changes are solely due to the increase in exergy efficiencies for heat and electricity of the W2E Rankine cycle. The efficiency of the expander is too low to offer a significant contribution to the electricity demand. Therefore, future research should focus on the affect that can be obtained by to other means of integration (e.g. Organic Rankine Cycle and Stirling Cycle).
DOCUMENT
Positive Energy Districts (PEDs) can play an important part in the energy transition by providing a year-round net positive energy balance in urban areas. In creating PEDs, new challenges emerge for decision-makers in government, businesses and for the public. This proposal aims to provide replicable strategies for improving the process of creating PEDs with a particular emphasis on stakeholder engagement, and to create replicable innovative business models for flexible energy production, consumption and storage. The project will involve stakeholders from different backgrounds by collaborating with the province, municipalities, network operators, housing associations, businesses and academia to ensure covering all necessary interests and mobilise support for the PED agenda. Two demo sites are part of the consortium to implement the lessons learnt and to bring new insights from practice to the findings of the project work packages. These are 1), Zwette VI, part of the city of Leeuwarden (NL), where local electricity congestion causes delays in building homes and small industries. And 2) Aalborg East (DK), a mixed-use neighbourhood with well-established partnerships between local stakeholders, seeking to implement green energy solutions with ambitions of moving towards net-zero emissions.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.