Hydrogen (H2) is a key element in the Dutch energy transition, considered a sources of flexibility to balance the variable renewable energy sources, facilitating its integration into the energy system. But also as an energy carrier. Both the gas and electricity transmission operators (TSO) have the vision to interconnect their networks with H2, by distributing the green H2 produced with offshore electrolysers into high pressure gas pipelines to relive the overload electric network. The planned compressed H2 pipelines cross the north of North-Holland region, offering a backbone for a H2 economy. Furthermore, at regional level there are already a big number of privet-public H2 developments, among them the DuWaAl, which is a H2 production-demand chain, consists of 1) An H2 mill, 2) 5 filling stations in the region and 3) a large fleet of trucks and other users. Because of these developments, the North-Holland region needs a better insight into the position that H2 could fulfil in the local energy system to contribute to the energy transition. The aim of this research is to analyse these H2 economy, from the emergent to settled, by identifying early and potential producer- consumer, considering the future infrastructure requirements, and exploring economy-environmental impacts of different supply paths
Within the Flexnode Plus project the long-term degradation characteristics of a proton exchange membrane (PEM) electrolyzer (5.5 kW, AC, 1 Nm3/h H2) and fuel cell (1.0 kW, DC, 0.9 Nm3/h) was experimentally tested. The electrolyzer unit was operated at various loads and pressures for approximately 750 hours in total, while the fuel cell was operated at a constant load of 1 Ω resistance for approximately 1120 hours in total. The efficiency of the hydrogen production in the electrolyzer and the electricity production in the fuel cell was expressed using the hourly average system efficiency and average cell efficiency. Inorder to predict the state of health and remaining lifetime of the electrolyzer cell and fuel cell, the decay of the cell voltage over time was monitored and the direct mapping from aging data method was used.The electrolyzer cell showed a stable cell voltage and cell efficiency in the studied time period, with an average cell voltage decay rate of 0.5 μV/h. The average cell voltage of the fuel cell dropped with a rate of 2 μV/h during the studied time period.
Omdat netcongestie en gelijktijdigheid van het energiesysteem steeds grotere uitdagingen worden naarmate de adoptie van zonne- en windenergie toeneemt, zien we in toenemende mate dat de duurzame energie opweksystemen niet tot hun volledige potentieel benut worden. Dat geldt voor wind- en zonneparken op elke schaal. Het is aantrekkelijk om deze ‘overtollige’ energie toch nog nuttig te gebruiken door het om te zetten in waterstof voor decentrale toepassingen. Tegelijk zien we dat de uitlevering van die waterstof in gasvorm problemen kent. De benodigde waterstof volumes zijn al snel heel groot wat zorgt voor complicaties op het gebied van veiligheid en vergunningen. Bij bestaande pilots treden problemen op omdat er (te) vaak nieuwe flessenbundels moeten worden gebracht om aan de vraag te voldoen. Bij opschaling zal dat zich vertalen naar een enorme capaciteit aan grote en zware gas cilinders, met de logistieke- en capaciteitsuitdagingen die daarmee gepaard gaan. Een oplossing daarvoor kan zijn om het waterstof in de vorm van methanol als drager te verplaatsen, gezien de energiedichtheid per volume van methanol ruim een factor 3 hoger is dan die van waterstof zelf. Daardoor nemen zowel de volumes, als de prijs voor eindgebruiker, af. Momenteel is er echter geen groene methanol als waterstofdrager commercieel verkrijgbaar. In dit project ontwikkelen we het systeemontwerp voor de productieketen van (een teveel aan) zonne-energie tot aan opslag van methanol. We bouwen een lab opstelling waarmee we efficiëntie en opbrengsten van dit systeem kunnen bepalen en voeren een techno-economische haalbaarheidsstudie uit, geschaald naar de Nederlandse waterstofeconomie. Het doel is om het werkingsprincipe en de levensvatbaarheid van groene methanol uit overtollige pv energie, aan te tonen.
In the course of the “energie transitie” hydrogen is likely to become a very important energy carrier. The production of hydrogen (and oxygen) by water electrolysis using electricity from sun or wind is the only sustainable option. Water electrolysis is a well-developed technique, however the production costs of hydrogen by electrolysis are still more expensive than the conventional (not sustainable) production by steam reforming. One challenge towards the large scale application of water electrolysis is the fabrication of stable and cheap (noble metal free) electrodes. In this project we propose to develop fabrication methods for working electrodes and membrane electrode stack (MEAs) that can be used to implement new (noble metal free) electrocatalysts in water electrolysers.
In Gelderland at industriepark Kleefsewaard, a prominent knowledge hub for hydrogen technology has been developed, featuring key industry players and research groups contributing to innovative and cost-effective hydrogen technologies. However, the region faces a challenge in the lack of available test equipment for hydrogen innovations. In Anion Exchange Membrane (AEM) technology, a route to follow is to create hydrogen more efficiently with stacks that can operate under high pressure (50 bar – 200 bar). This results in compact hydrogen storage. Research must be done to understand crossover effects which become more apparent at these high pressure conditions. The overall goal is to design a Balanced of Plant (BOP) system, incorporating Process Flow Diagram (PFD) and Piping & Instrumentation Diagram (P&ID) elements, alongside hydrogen purification systems and gas-liquid separators, for a test setup operating AEM stacks at 200 bar. De Nooij Stainless contributes by designing and fabricating a gas liquid separator, addressing challenges such as compatibility, elevated temperatures, and hydrogen safety. ON2Quest collaborates in supporting the design of a hydrogen purification system and the Balance of Plant (BoP), ensuring flexibility for testing future stacks and hydrogen purification components. HyET E-Trol specializes in high pressure (up to 200 bar) AEM electrolyser stacks and is responsible for providing problem statements and engineering challenges related to the (Balanced of Plant) BoP of AEM systems, and contributes in solving them. Subsequent projects will feature test sequences centered on other stacks, allowing for testing stacks from other companies. The resulting framework will provide a foundation for ongoing advancements, with contributions from each partner playing a crucial role in achieving the project's goals.
Production of hydrogen from renewable power sources requires dynamic operation of electrolysers. A dedicated research activity is proposed to explore and study the impact of variable operation on electrolyser performance and the electricity grid. In addition optimal control strategies will be developed with the goal to improve overall operational efficiency. It is expected that by applying advanced control strategies 2 to 3% operational efficiency gain can be achieved. The research proposed in this project is aimed to explore, validate and demonstrate this potential efficiency gain on the PEM unit.