The Northern Netherlands is an unique environment for sustainably-minded (bio)chemical businesses due to the regional availability of renewable feedstock, energy and existing infrastructure as well as the proximity to excellent knowledge centers and upscaling facilities. Within the last decades, several developments unravelled in the biobased circular transition. Exploring how these developments were initiated, the article means to show the opportunities that this region has to offer today. It also makes a strong argument for the economic potential arising from the creative combination of available feedstocks in an innovative ecosystem providing necessary frame-work conditions and fostering close intersectoral collaboration.
LINK
In het kader van het Interreg North Sea Region project "RIGHT skills for the RIGHT future" is een rapport geschreven waarin het concept waardeketens (value chains) en de ontwikkeling daarvan in de energiesector verkend is.
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.
In the course of the “energie transitie” hydrogen is likely to become a very important energy carrier. The production of hydrogen (and oxygen) by water electrolysis using electricity from sun or wind is the only sustainable option. Water electrolysis is a well-developed technique, however the production costs of hydrogen by electrolysis are still more expensive than the conventional (not sustainable) production by steam reforming. One challenge towards the large scale application of water electrolysis is the fabrication of stable and cheap (noble metal free) electrodes. In this project we propose to develop fabrication methods for working electrodes and membrane electrode stack (MEAs) that can be used to implement new (noble metal free) electrocatalysts in water electrolysers.
Production of hydrogen from renewable power sources requires dynamic operation of electrolysers. A dedicated research activity is proposed to explore and study the impact of variable operation on electrolyser performance and the electricity grid. In addition optimal control strategies will be developed with the goal to improve overall operational efficiency. It is expected that by applying advanced control strategies 2 to 3% operational efficiency gain can be achieved. The research proposed in this project is aimed to explore, validate and demonstrate this potential efficiency gain on the PEM unit.
Hydrohub beoogd een testomgeving voor electrolysers te ontwikkelen en realiseren in de proeftuin van EnTranCe. Projectdoel is om onderzoek te doen aan mid-size electrolysers om de ‘total cost of equipment’ te reduceren door kritisch te kijken en onderzoek te doen naar CAPEX- en OPEX vermindering, Verbetering van efficiency en behoud of verbetering van levenduur (of een positieve combinatie van deze factoren). In het eerste deel van het project (hydrohub-1) is e.e.a. ontworpen en gebouwd (utilities + infrastructuur bij EnTranCe + PEM-electrolser door TNO + Alkaline electrolyser door HyCC/Nobian/ISPT) Het project Hydrohub-II beoogt het ‘in bedrijfstellen van de systemen’ en het operationeel maken. Vervolgens het beoogde onderzoek uit te voeren.