From the article: Abstract Over the last decades, philosophers and cognitive scientists have argued that the brain constitutes only one of several contributing factors to cognition, the other factors being the body and the world. This position we refer to as Embodied Embedded Cognition (EEC). The main purpose of this paper is to consider what EEC implies for the task interpretation of the control system. We argue that the traditional view of the control system as involved in planning and decision making based on beliefs about the world runs into the problem of computational intractability. EEC views the control system as relying heavily on the naturally evolved fit between organism and environment. A ‘lazy’ control structure could be ‘ignorantly successful’ in a ‘user friendly’ world, by facilitating the transitory creation of a flexible and integrated set of behavioral layers that are constitutive of ongoing behavior. We close by discussing the types of questions this could imply for empirical research in cognitive neuroscience and robotics.
LINK
The ‘Dancing with Mathematics’ workshop includes a variety of hands-on educational activities that combine these two seemingly incompatible disciplines through motion-capture technologies. A heterogeneous group of researchers with diverse academic backgrounds and expertise, that collaborate in the HORIZON-WIDERA project ‘TransEET’ (Transforming Education with Emerging Technologies) has: first, extended two digital technologies widely used for mathematics education (GeoGebra and MaLT2) with motion-capture technologies for embodied interaction; and then, co-developed the ‘Dancing with Mathematics’ pilot educational activities connecting dance and mathematics for different grades. In the workshop, participants will have the opportunity to engage in an innovative learning experience of using their bodies to express mathematical concepts for creating dancing animations. The workshop aims to collect feedback from the arts-related community to feed the redesign phase of the resources for the main phase of the TransEET project and discuss sustainable ways to support arts integration in the main body of school disciplines.
To reach for abstraction is a major but challenging goal in mathematics education: teachers struggle with finding ways how to foster abstraction in their classes. To shed light on this issue for the case of geometry education, we align theoretical perspectives on embodied learning and abstraction with practical perspectives from in-service teachers. We focus on the teaching and learning of realistic geometry, not only because this domain is apt for sensori-motor action investigations, but also because abstraction in realistic geometry is under-researched in relation to other domains of mathematics, and teachers’ knowledge of geometry and confidence in teaching it lag behind. The following research question will be addressed: how can a theoretical embodied perspective on abstraction in geometry education in the higher grades of primary school inform current teacher practices? To answer this question, we carried out a literature study and an interview study with in-service teachers (n = 6). As a result of the literature study, we consider embodied abstraction in geometry as a process of reflecting on, describing, explaining, and structuring of sensory-motor actions in the experienced world through developing and using mathematical artifacts. The results from the interview study show that teachers are potentially prepared for using aspects of embodied learning (e.g., manipulatives), but are not aware of the different aspects of enactment that may invite students’ abstraction. We conclude that theories on embodiment and abstraction do not suffice to foster students’ abstraction process in geometry. Instead, teachers’ knowledge of embodied abstraction in geometry and how to foster this grows with experience in enactment, and with the discovery that cognition emerges to serve action.
LINK
This project assists architects and engineers to validate their strategies and methods, respectively, toward a sustainable design practice. The aim is to develop prototype intelligent tools to forecast the carbon footprint of a building in the initial design process given the visual representations of space layout. The prediction of carbon emission (both embodied and operational) in the primary stages of architectural design, can have a long-lasting impact on the carbon footprint of a building. In the current design strategy, emission measures are considered only at the final phase of the design process once major parameters of space configuration such as volume, compactness, envelope, and materials are fixed. The emission assessment only at the final phase of the building design is due to the costly and inefficient interaction between the architect and the consultant. This proposal offers a method to automate the exchange between the designer and the engineer using a computer vision tool that reads the architectural drawings and estimates the carbon emission at each design iteration. The tool is directly used by the designer to track the effectiveness of every design choice on emission score. In turn, the engineering firm adapts the tool to calculate the emission for a future building directly from visual models such as shared Revit documents. The building realization is predominantly visual at the early design stages. Thus, computer vision is a promising technology to infer visual attributes, from architectural drawings, to calculate the carbon footprint of the building. The data collection for training and evaluation of the computer vision model and machine learning framework is the main challenge of the project. Our consortium provides the required resources and expertise to develop trustworthy data for predicting emission scores directly from architectural drawings.
Kunst- en cultuurbeleving zijn voor velen een belangrijk deel van het leven. Professionals van Zuyd Hogeschool en Vitalis zorggroep zijn ervan doordrongen dat dit niet mag veranderen wanneer je verhuist naar een verpleeghuis. Interactieve kunst heeft de potentie om in het verpleeghuis in deze behoefte te voorzien. Als kunstbeleving in de vorm van een interactieve installatie deel wil uitmaken van het dagelijks leven in een verpleeghuis, is experiment en onderzoek naar interfaces in deze context nodig. Een interface kan een betekenisvolle ervaring in de weg staan, faciliteren of versterken. Dit geldt zeker voor de doelgroep verpleeghuisbewoners vanwege cognitieve en fysieke beperkingen die deze mensen ervaren. We willen aan de hand van interface prototypes exploreren wat het effect is van het integreren van natuurlijke fenomenen (bv. zwaartekracht) en fysieke objecten (bv. een echte steen in digitaal water) (embodied interaction) als interface, met als doel een nieuw soort kunstbeleving in het verpleeghuis te introduceren, met name voor mensen met dementie. De uitkomsten van dit project zijn de experimenten zelf en observaties van de reacties van verpleeghuisbewoners ten aanzien van deze interfaces.
The PhD research by Joris Weijdom studies the impact of collective embodied design techniques in collaborative mixed-reality environments (CMRE) in art- and engineering design practice and education. He aims to stimulate invention and innovation from an early stage of the collective design process.Joris combines theory and practice from the performing arts, human-computer interaction, and engineering to develop CMRE configurations, strategies for its creative implementation, and an embodied immersive learning pedagogy for students and professionals.This lecture was given at the Transmedia Arts seminar of the Mahindra Humanities Center of Harvard University. In this lecture, Joris Weijdom discusses critical concepts, such as embodiment, presence, and immersion, that concern mixed-reality design in the performing arts. He introduces examples from his practice and interdisciplinary projects of other artists.About the researchMultiple research areas now support the idea that embodiment is an underpinning of cognition, suggesting new discovery and learning approaches through full-body engagement with the virtual environment. Furthermore, improvisation and immediate reflection on the experience itself, common creative strategies in artist training and practice, are central when inventing something new. In this research, a new embodied design method, entitled Performative prototyping, has been developed to enable interdisciplinary collective design processes in CMRE’s and offers a vocabulary of multiple perspectives to reflect on its outcomes.Studies also find that engineering education values creativity in design processes, but often disregards the potential of full-body improvisation in generating and refining ideas. Conversely, artists lack the technical know-how to utilize mixed-reality technologies in their design process. This know-how from multiple disciplines is thus combined and explored in this research, connecting concepts and discourse from human-computer interaction and media- and performance studies.This research is a collaboration of the University of Twente, Utrecht University, and HKU University of the Arts Utrecht. This research is partly financed by the Dutch Research Council (NWO).Mixed-reality experiences merge real and virtual environments in which physical and digital spaces, objects, and actors co-exist and interact in real-time. Collaborative Mix-Reality Environments, or CMRE's, enable creative design- and learning processes through full-body interaction with spatial manifestations of mediated ideas and concepts, as live-puppeteered or automated real-time computer-generated content. It employs large-scale projection mapping techniques, motion-capture, augmented- and virtual reality technologies, and networked real-time 3D environments in various inter-connected configurations.This keynote was given at the IETM Plenary meeting in Amsterdam for more than 500 theatre and performing arts professionals. It addresses the following questions in a roller coaster ride of thought-provoking ideas and examples from the world of technology, media, and theatre:What do current developments like Mixed Reality, Transmedia, and The Internet of Things mean for telling stories and creating theatrical experiences? How do we design performances on multiple "stages" and relate to our audiences when they become co-creators?Contactjoris.weijdom@hku.nl / LinkedIn profileThis research is part of the professorship Performative Processes