The impact of the construction industry on the natural environment is severe, natural areas are changedinto predominantly hard solid surfaces, the energy use in the built environment is high and the industryputs huge claims on materials.
MULTIFILE
Anaerobic digestion (AD) can play an important role in achieving the renewable energy goals set within the European Union. Within this article the focus is placed on reaching the Dutch local renewable production goal set for the year 2020 with locally available biomass waste flows, avoiding intensive farming and long transport distances of biomass and energy carriers. The bio-energy yields, efficiency and environmental sustainability are analyzed for five municipalities in the northern part of the Netherlands, using three utilization pathways: green gas production, combined heat and power, and waste management. Literature has indicated that there is sufficient bio-energy potential in local waste streams to reach the aforementioned goal. However, the average useful energy finally produced by the AD production pathway is significantly lower, often due to poor quality biomass and difficult harvesting conditions. Furthermore, of the potential bio-energy input in the three utilization pathways considered in this article, on average: 73% can be extracted as green gas; 57% as heat and power; and 44% as green gas in the waste management pathway. This demonstrates that the Dutch renewable production goal cannot be reached. The green gas utilization pathway is preferable for reaching production goals as it retains the highest amount of energy from the feedstock. However, environmental sustainability favors the waste management pathway as it has a higher overall efficiency, and lower emissions and environmental impacts. The main lessons drawn from the aforementioned are twofold: there is a substantial gap between bio-energy potential and net energy gain; there is also a gap between top–down regulation and actual emission reduction and sustainability. Therefore, a full life cycle-based understanding of the absolute energy and environmental impact of biogas production and utilization pathways is required to help governments to develop optimal policies serving a broad set of sustainable objectives. Well-founded ideas and decisions are needed on how best to utilize the limited biomass availability most effectively and sustainably in the near and far future, as biogas can play a supportive role for integrating other renewable sources into local decentralized energy systems as a flexible and storable energy source.
In this study, aviation, energy, exergy, environmental, exergoeconomic, and exergoenvironmental analyses are performed on a CFM56-3 series high by-pass turbofan engine fueled with Jet-A1 fuel. Specific fuel consumption and specific thrust of the engine are found to be 0.01098 kg/kN.s and 0.3178 kN/kg/s, respectively. Engine's energy efficiency is calculated as 35.37%, while waste energy ratio is obtained as 64.63%. Exergy efficiency, waste exergy rate, and fuel exergy waste ratio are forecasted as 33.32%, 33175.03 kW, and 66.68%, respectively. Environmental effect factor and ecological effect factor are computed as 2.001 and 3.001, while ecological objective function and its index are taken into account of −16597.22 kW and −1.001, respectively. Exergetic sustainability index and sustainable efficiency factor are determined as 0.5 and 1.5 for the CFM56-3 engine, respectively. Environmental damage cost rate is determined as 519.753 $/h, while the environmental damage cost index is accounted as 0.0314 $/kWh. Specific exergy cost of the engine production is found as 40.898 $/GJ from exergoeconomic analysis, while specific product exergy cost is expressed as 49.607 $/GJ from exergoenvironmental analysis. From exergoenvironmental economic analysis, specific exergy cost of fuel is computed as 10.103 $/GJ when specific exergy cost of production is determined as 40.898 $/GJ.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
The research, supported by our partners, sets out to understand the drivers and barriers to sustainable logistics in port operations using a case study of drone package delivery at Rotterdam Port. Beyond the technical challenges of drone technology as an upcoming technology, it needs to be clarified how drones can operate within a port ecosystem and how they could contribute to sustainable logistics. KRVE (boatmen association), supported by other stakeholders of Rotterdam port, approached our school to conduct exploratory research. Rotterdam Port is the busiest port in Europe in terms of container volume. Thirty thousand vessels enter the port yearly, all needing various services, including deliveries. Around 120 packages/day are delivered to ships/offices onshore using small boats, cars, or trucks. Deliveries can take hours, although the distance to the receiver is close via the air. Around 80% of the packages are up to 20kg, with a maximum of 50kg. Typical content includes documents, spare parts, and samples for chemical analysis. Delivery of packages using drones has advantages compared with traditional transport methods: 1. It can save time, which is critical to port operators and ship owners trying to reduce mooring costs. 2. It can increase logistic efficiency by streamlining operations. 3. It can reduce carbon emissions by limiting the use of diesel engines, boats, cars, and trucks. 4. It can reduce potential accidents involving people in dangerous environments. The research will highlight whether drones can create value (economic, environmental, social) for logistics in port operations. The research output links to key national logistic agenda topics such as a circular economy with the development of innovative logistic ecosystems, energy transition with the reduction of carbon emissions, societal earning potential where new technology can stimulate the economy, digitalization, key enabling technology for lean operations, and opportunities for innovative business models.
Façades have a high environmental and economic impact: they contribute 10-30% to GHG emissions and 30-40% of the building investment of new buildings [1]. Modern façades are highly optimized complex systems that consist of multiple components with varying life cycles [2]; however, many of the materials they employ are critical, and have a high CO2 footprint [3, 4]. New bio-composite facades products have emerged (a) whose mechanical properties are comparable to those of aluminum or glass fibre; (b) have a lower energy footprint; and (c) can fully or partially biodegrade [5]. Moreover, primary material sourcing from different waste streams can significantly lower the end products’ pricing. Still, their aesthetic qualities have not been sufficiently explored, so the scalability of their production remains limited. This project will develop specific combinations of bio-composites using food waste fillers and a biopolymer resin. Sheet samples will be made from these combinations and further tested against their mechanical properties, water resistance, aging and weathering. A Life Cycle Analysis will further consolidate the samples’ energy footprint. A new facade cladding tile product system with complex geometry using the overall best performing material composition will be designed and prototyped [17]. Emphasis will be given to the aesthetical properties of the tiles and their demountability. The system tiles will be further applied and tested at 1:1 scale, at The Green Village. During the project, an advisory board consisting of several companies within the building industry will be systematically consulted and their feedback will help the overall design process and their respective end products.