A review has been completed for a verification and validation (V&V) of the (Excel) BioGas simulator or EBS model. The EBS model calculates the environmental impact of biogas production pathways using Material and Energy Flow Analysis, time dependent dynamics, geographic information, and Life Cycle analysis. Within this article a V&V method is researched, selected and applied to validate the EBS model. Through the use of the method described within this article: mistakes in the model are resolved, the strengths and weaknesses of the model are found, and the concept of the model is tested and strengthened. The validation process does not only improve the model but also helps the modelers in widening their focus and scope. This article can, therefore, also be used in the validation process of similar models. The main result from the V&V process indicates that the EBS model is valid; however, it should be considered as an expert model and should only be used by expert users.
DOCUMENT
The municipality of Apeldoorn had polled the interest among its private home-owners to turn their homes energy neutral. Based on the enthusiastic response, Apeldoorn saw the launch of the Energy Apeldoorn (#ENEXAP) in 2011. Its goal was to convert to it technically and financially possible for privately owned homes to be refurbished and to energy neutral, taking the residential needs and wishes from occupants as the starting point. The project was called an Expedition, because although the goal was clear, the road to get there wasn’t. The Expedition team comprised businesses, civil-society organisations, the local university of applied sciences, the municipality of Apeldoorn, and of course, residents in a central role. The project was supported by Platform31, as part of the Dutch government’s Energy Leap programme. The #ENEXAP involved 38 homes, spread out through Apeldoorn and surrounding villages. Even though the houses were very diverse, the group of residents was quite similar: mostly middle- aged, affluent people who highly value the environment and sustainability. An important aspect of the project was the independent and active role residents played. In collaboration with businesses and professionals, through meetings, excursions, workshops and by filling in a step- by-step plan on the website, the residents gathered information about their personal situation, the energy performance of their home and the possibilities available for them to save and generate energy themselves. Businesses were encouraged to develop an integrated approach for home-owners, and consortia were set up by businesses to develop the strategy, products and services needed to meet this demand. On top of making minimal twenty from the thirty-eight houses in the project energy neutral, the ultimate goal was to boost the local demand for energy- neutral refurbishment and encourage an appropriate supply of services, opening up the (local) market for energy neutral refurbishment. This paper will reflect on the outcomes of this collective in the period 2011-2015.
DOCUMENT
The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks. Sustainability is expressed by three main factors: efficiency in (Process) Energy Returned On Invested (P)EROI, carbon footprint in Global Warming Potential GWP(100), and environmental impact in EcoPoints. The green gas production pathway operates on a mass fraction of 50% feedstock with 50% manure. The sustainability of the analyzed feedstocks differs substantially, favoring biomass waste flows over, the specially cultivated energy crop, maize. The use of optimization, in the shape of internal energy production, green gas powered trucks, and mitigation can significantly improve the sustainability for all feedstocks, but favors waste materials. Results indicate a possible improvement from an average (P)EROI for all feedstocks of 2.3 up to an average of 7.0 GJ/GJ. The carbon footprint can potentially be reduced from an average of 40 down to 18 kgCO2eq/GJ. The environmental impact can potentially be reduced from an average of 5.6 down to 1.8 Pt/GJ. Internal energy production proved to be the most effective optimization. However, the use of optimization aforementioned will result in les green gas injected into the gas grid as it is partially consumed internally. Overall, the feedstock straw was the most energy efficient, where the feedstock harvest remains proved to be the most environmentally sustainable. Furthermore, transport distances of all feedstocks should not exceed 150 km or emissions and environmental impacts will surpass those of natural gas, used as a reference. Using green gas as a fuel can increase the acceptable transportation range to over 300 km. Within the context aforementioned and from an energy efficiency and sustainable point of view, the anaerobic digestion process should be utilized for processing locally available waste feedstocks with the added advantage of producing energy, which should first be used internally for powering the green gas production process.
DOCUMENT
Abstract written to Biogas Science for oral presentation. Regarding a new methodology for determining the energy efficiency, carbon footprint and environmental impact of anaerobic biogas production pathways. Additionally, results are given regarding the impacts of energy crops and waste products used as feedstock.
DOCUMENT
This study explores how households interact with smart systems for energy usage, providing insights into the field's trends, themes and evolution through a bibliometric analysis of 547 relevant literature from 2015 to 2025. Our findings discover: (1) Research activity has grown over the past decade, with leading journals recognizing several productive authors. Increased collaboration and interdisciplinary work are expected to expand; (2) Key research hotspots, identified through keyword co-occurrence, with two (exploration and development) stages, highlighting the interplay between technological, economic, environmental, and behavioral factors within the field; (3) Future research should place greater emphasis on understanding how emerging technologies interact with human, with a deeper understanding of users. Beyond the individual perspective, social dimensions also demand investigation. Finally, research should also aim to support policy development. To conclude, this study contributes to a broader perspective of this topic and highlights directions for future research development.
MULTIFILE
Lectorale redeboekje naar aanleiding van de intrede in het lectoraat Systeemintegratie in de energietransitie
MULTIFILE
Anaerobic digestion (AD) can play an important role in achieving renewable goals set within the Netherlands which strives for 40 PJ bio-energy in the year 2020. This research focusses on reaching this goal with locally available biomass waste flows (e.g. manures, grasses, harvest remains, municipal organic wastes). Therefore, the bio-energy yields, process efficiency and environmental sustainability are analyzed for five municipalities in the northern part Netherlands, using three utilization pathways: green gas production; combined heat and power; and waste management. Results indicate that the Dutch goal cannot be filled through the use of local biomass waste streams, which can only reach an average of 20 PJ. Furthermore renewable goals and environmental sustainability do not always align. Therefore, understanding of the absolute energy and environmental impact of biogas production pathways is required to help governments form proper policies, to promote an environmentally and social sustainable energy system.
DOCUMENT
Anaerobic digestion (AD) can play an important role in achieving the renewable energy goals set within the European Union. Within this article the focus is placed on reaching the Dutch local renewable production goal set for the year 2020 with locally available biomass waste flows, avoiding intensive farming and long transport distances of biomass and energy carriers. The bio-energy yields, efficiency and environmental sustainability are analyzed for five municipalities in the northern part of the Netherlands, using three utilization pathways: green gas production, combined heat and power, and waste management. Literature has indicated that there is sufficient bio-energy potential in local waste streams to reach the aforementioned goal. However, the average useful energy finally produced by the AD production pathway is significantly lower, often due to poor quality biomass and difficult harvesting conditions. Furthermore, of the potential bio-energy input in the three utilization pathways considered in this article, on average: 73% can be extracted as green gas; 57% as heat and power; and 44% as green gas in the waste management pathway. This demonstrates that the Dutch renewable production goal cannot be reached. The green gas utilization pathway is preferable for reaching production goals as it retains the highest amount of energy from the feedstock. However, environmental sustainability favors the waste management pathway as it has a higher overall efficiency, and lower emissions and environmental impacts. The main lessons drawn from the aforementioned are twofold: there is a substantial gap between bio-energy potential and net energy gain; there is also a gap between top–down regulation and actual emission reduction and sustainability. Therefore, a full life cycle-based understanding of the absolute energy and environmental impact of biogas production and utilization pathways is required to help governments to develop optimal policies serving a broad set of sustainable objectives. Well-founded ideas and decisions are needed on how best to utilize the limited biomass availability most effectively and sustainably in the near and far future, as biogas can play a supportive role for integrating other renewable sources into local decentralized energy systems as a flexible and storable energy source.
DOCUMENT
A transparent and comparable understanding of the energy efficiency, carbon footprint, and environmental impacts of renewable resources are required in the decision making and planning process towards a more sustainable energy system. Therefore, a new approach is proposed for measuring the environmental sustainability of anaerobic digestion green gas production pathways. The approach is based on the industrial metabolism concept, and is expanded with three known methods. First, the Material Flow Analysis method is used to simulate the decentralized energy system. Second, the Material and Energy Flow Analysis method is used to determine the direct energy and material requirements. Finally, Life Cycle Analysis is used to calculate the indirect material and energy requirements, including the embodied energy of the components and required maintenance. Complexity will be handled through a modular approach, which allows for the simplification of the green gas production pathway while also allowing for easy modification in order to determine the environmental impacts for specific conditions and scenarios. Temporal dynamics will be introduced in the approach through the use of hourly intervals and yearly scenarios. The environmental sustainability of green gas production is expressed in (Process) Energy Returned on Energy Invested, Carbon Footprint, and EcoPoints. The proposed approach within this article can be used for generating and identifying sustainable solutions. By demanding a clear and structured Material and Energy Flow Analysis of the production pathway and clear expression for energy efficiency and environmental sustainability the analysis or model can become more transparent and therefore easier to interpret and compare. Hence, a clear ruler and measuring technique can aid in the decision making and planning process towards a more sustainable energy system.
LINK
The transformation from the current energy system to a decentralized renewable energy system requires the transformation of communities into energy neutral or even energy producing communities. Increasingly, citizens become 'prosumers' and pool their resources to start a local energy initiative. In this paper we present an in-depth study of networks that recently developed, which challenge the established way of centralized decision-making on energy resources. Many local communities are eager to promote sustainable energy production, to use local financial resources for the local community and to employ democratic governance of energy production and supply. Furthermore, we study how these co-operations are linked to local, regional and national networks for community energy. We use both Actor-Network Theory (ANT) and Social Movement Theory (SMT) to investigate the initiatives, as this allows a dynamic analysis of collective strategies. We discuss the obduracy of the energy system and how this system is challenged by new connections between communities and global networks and by new types of energy providers that are rooted in social networks. Furthermore, we draw attention to the way community energy networks provide a social innovation while realizing a decentralized and decarbonized energy system.
DOCUMENT