An energy harvesting device for obtaining instantaneous energy from drops without needing of moving the drops along the device, in a reduced scale and combinable with other types of harvesting devices, the energy harvesting device comprising one or more triboelectric generators comprising a bottom electrode, a friction or triboelectric element placed over the bottom electrode, and at least two top exposed electrodes electrically connected placed over the triboelectric element and defining at least one gap between them, exposing the triboelectric element to the external environment so that on contacting a drop of liquid makes an electrical connection between the top electrodes varying instantaneously (microseconds range) the capacitance of the triboelectric generators.
LINK
An energy harvesting device for obtaining energy from drops without needing of moving the drops along the device, in a reduced scale and combinable with othertypes of harvesting devices, the energy harvesting device comprising one or more triboelectric generators comprising a bottom electrode, a friction or triboelectric element placed over the bottom electrode, and at least two top electrodes placed over the triboelectric element and defining at least one gap between them, exposing the triboelectric element to the external environment so that on contacting a drop of liquid makes an electrical connection between the top electrodes varying the capacitance of the triboelectric generators and alternatively for functioning as a power unit for a sensor or as a self-powered sensor producing an electrical signal generated by the contact of the liquid with the electrodes.
DOCUMENT
Thermo-elektrische materialen zijn al sinds de 19e eeuw bekend. In 1834 ontdekte de Franse natuurkundige Jean Peltier dat er warmte wordt getransporteerd van de overgang tussen twee metalen wanneer er een elektrische stroom vloeit door het grensvlak. Het grote voordeel van Peltier elementen is dat er geen bewegende delen of vloeistoffen in zitten, waardoor het onderhoudsarm en stil is. Nadeel is het lage rendement (<10%) van deze materialen. Grootste uitdaging is het vinden van het juiste materiaal: goede elektrische geleiding in combinatie met slechte warmtegeleiding. Slechte warmtegeleiding is noodzakelijk om het temperatuurverschil tussen beide kanten te handhaven. Probleem is dat de meeste materialen die goed elektriciteit geleiden, eveneens goed warmte geleiden. Warmte wordt onder andere doorgegeven door elektronen, elektriciteit ook, dus daar valt niets te winnen. Warmte wordt ook doorgegeven door trillingen (fononen). Deze trillingen probeert men op nanoschaal te dempen. Ontwikkelingen in de nanotechnologie hebben aangetoond dat het mogelijk is om de efficiency van de thermo-elektrische materialen te verbeteren. Hierdoor kan meer elektriciteit worden opgewekt dan voorheen en wordt het Seebeck effect (energy harvesting) interessant. Dit document beschrijft de eigenschappen en toepassingsmogelijkheden van thermo-elektrische materialen. Het document is opgeleverd in het project Innovatief Materialen Platform Twente (IMPT). In dit project heeft het IMPT 75 innovatieve materialen in kaart gebracht. Met een tiental materialen is toegepast onderzoek gedaan, zodat ondernemers en ontwerpers weten of en hoe zij deze kunnen toepassen.
MULTIFILE
TU Delft, in collaboration with Gravity Energy BV, has conducted a feasibility study on harvesting electric energy from wind and vibrations using a wobbling triboelectric nanogenerator (WTENG). Unlike conventional wind turbines, the WTENG converts wind/vibration energy into contact-separation events through a wobbling structure and unbalanced mass. Initial experimental findings demonstrated a peak power density of 1.6 W/m² under optimal conditions. Additionally, the harvester successfully charged a 3.7V lithium-ion battery with over 4.5 μA, illustrated in a self-powered light mast as a practical demonstration in collaboration with TimberLAB. This project aims to advance this research by developing a functioning prototype for public spaces, particularly lanterns, in partnership with TimberLAB and Gravity Energy. The study will explore the potential of triboelectric nanogenerators (TENG) and piezoelectric materials to optimize energy harvesting efficiency and power output. Specifically, the project will focus on improving the WTENG's output power for practical applications by optimizing parameters such as electrode dimensions and contact-separation quality. It will also explore cost-effective, commercially available materials and best fabrication/assembly strategies to simplify scalability for different length scales and power outputs. The research will proceed with the following steps: Design and Prototype Development: Create a prototype WTENG to evaluate energy harvesting efficiency and the quantity of energy harvested. A hybrid of TENG and piezoelectric materials will be designed and assessed. Optimization: Refine the system's design by considering the scaling effect and combinations of TENG-piezoelectric materials, focusing on maximizing energy efficiency (power output). This includes exploring size effects and optimal dimensions. Real-World Application Demonstration: Assess the optimized system's potential to power lanterns in close collaboration with TimberLAB, DVC Groep BV and Gravity Energy. Identify key parameters affecting the efficiency of WTENG technology and propose a roadmap for its exploitation in other applications such as public space lighting and charging.
Internet of Things (IoT) is tagging low power devices, miniaturized, with machine-readable identification tags, which are integrated with sensors to collect information and wireless technology to connect them with the Internet. These devices have a very low energy usage. Powering these devices with battery is very labor intensive, costly and tedious especially as number of nodes increases, which is in many applications, is the case. Hence the main objective of this proposal is to introduce new product called RF Colletor, in the market such that IoT devices function independent of battery. Using the suggested approach the wille be energized using Radio Frequency (RF) energy harvesting. RF Collector wirelessly capture the RF energy that is wasted in space, and re-use it again as the power source for IoT devices and hence making them autonomous of battery. The ability to harvest RF energy enables wireless charging of low-power devices in real time. This has resulting benefits to sustainability, cost reduction, product design, usability, and reliability.
The objective of Sustainable Solid Biofuel project is to contribute to a zero-waste and low-carbon emission production of charcoal by evaluating the feasibility and energy efficiency of three different conversion technologies. According to the IEA’s World Energy Outlook 2015 3 billion (more than a third of the global population) use solid biomass as wood, charcoal, or animal waste for cooking and heating1. Charcoal is one of the most widely used of the solid biofuels. In current charcoal production processes the gas stream from pyrolysis are mostly directly released to the environment which wastes energy and causes serious environmental pollution. However, the production of charcoal can be improved to be practiced on a sustainable basis by careful selection of wood or alternative biomass source as wood waste or agricultural residues and further focusing on harvesting strategy and production techniques. In the conversion process it is necessary to increase the energy efficiency while reducing emissions. Further sustainability can be increased by processing the smoke that is exhausted from the kiln, that correspond to roughly one third of the whole biomass. Within the volatile components in the smoke there are chemicals which can be used, for example, as industrial cleaners or wood preservatives and thus one of the environmental drawbacks of charcoal production can be eliminated and turned into another product input. Brazil is the world's largest charcoal producer2 consequently the state of the art of the recearch in this field can be found in Brazil. In this Sustainable Solid Biofuels project one of the leading universities of Brazil, the Universidade Federal de Viçosa (UFV) is joining forces with Avans University of Applied Sciences and two Dutch SMEs Privium B.V. and Charcotec B.V. to carry out the evaluation of the improvements that can be achieved in the energy efficiency.