To avoid energy scarcity as well as climate change, a transition towards a sustainable society must be initiated. Within this context, governmental bodies and/or companies often note sustainability as an end goal, for instance as a green circular economy. However, if sustainability cannot be clearly defined as an end goal or measured uniformly and transparently, then the direction and progress towards this goal can only be roughly followed. A clear understanding of and a transparent, uniform measuring technique for sustainability are hence required for sustainable and circular (renewable) energy production pathways (REPPs), as society is asking for an integrated and understandable overview of the decision-making and planning process towards a future sustainable energy system. Therefore, within this dissertation, a new approach is proposed for measuring and optimizing the sustainability of REPPs; it is useful for the analysis, comparison, and optimization of REPP systems on all elements of sustainability. The new approach is applied and tested on a case based on farm-scale, anaerobic digestion (AD), biogas production pathways.
LINK
A transparent and comparable understanding of the energy efficiency, carbon footprint, and environmental impacts of renewable resources are required in the decision making and planning process towards a more sustainable energy system. Therefore, a new approach is proposed for measuring the environmental sustainability of anaerobic digestion green gas production pathways. The approach is based on the industrial metabolism concept, and is expanded with three known methods. First, the Material Flow Analysis method is used to simulate the decentralized energy system. Second, the Material and Energy Flow Analysis method is used to determine the direct energy and material requirements. Finally, Life Cycle Analysis is used to calculate the indirect material and energy requirements, including the embodied energy of the components and required maintenance. Complexity will be handled through a modular approach, which allows for the simplification of the green gas production pathway while also allowing for easy modification in order to determine the environmental impacts for specific conditions and scenarios. Temporal dynamics will be introduced in the approach through the use of hourly intervals and yearly scenarios. The environmental sustainability of green gas production is expressed in (Process) Energy Returned on Energy Invested, Carbon Footprint, and EcoPoints. The proposed approach within this article can be used for generating and identifying sustainable solutions. By demanding a clear and structured Material and Energy Flow Analysis of the production pathway and clear expression for energy efficiency and environmental sustainability the analysis or model can become more transparent and therefore easier to interpret and compare. Hence, a clear ruler and measuring technique can aid in the decision making and planning process towards a more sustainable energy system.
LINK
The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks. Sustainability is expressed by three main factors: efficiency in (Process) Energy Returned On Invested (P)EROI, carbon footprint in Global Warming Potential GWP(100), and environmental impact in EcoPoints. The green gas production pathway operates on a mass fraction of 50% feedstock with 50% manure. The sustainability of the analyzed feedstocks differs substantially, favoring biomass waste flows over, the specially cultivated energy crop, maize. The use of optimization, in the shape of internal energy production, green gas powered trucks, and mitigation can significantly improve the sustainability for all feedstocks, but favors waste materials. Results indicate a possible improvement from an average (P)EROI for all feedstocks of 2.3 up to an average of 7.0 GJ/GJ. The carbon footprint can potentially be reduced from an average of 40 down to 18 kgCO2eq/GJ. The environmental impact can potentially be reduced from an average of 5.6 down to 1.8 Pt/GJ. Internal energy production proved to be the most effective optimization. However, the use of optimization aforementioned will result in les green gas injected into the gas grid as it is partially consumed internally. Overall, the feedstock straw was the most energy efficient, where the feedstock harvest remains proved to be the most environmentally sustainable. Furthermore, transport distances of all feedstocks should not exceed 150 km or emissions and environmental impacts will surpass those of natural gas, used as a reference. Using green gas as a fuel can increase the acceptable transportation range to over 300 km. Within the context aforementioned and from an energy efficiency and sustainable point of view, the anaerobic digestion process should be utilized for processing locally available waste feedstocks with the added advantage of producing energy, which should first be used internally for powering the green gas production process.
DOCUMENT
Abstract written to Biogas Science for oral presentation. Regarding a new methodology for determining the energy efficiency, carbon footprint and environmental impact of anaerobic biogas production pathways. Additionally, results are given regarding the impacts of energy crops and waste products used as feedstock.
DOCUMENT
During the opening of the Hanze Energy Transition Centre or EnTranCe (2015-10-13) posters were on display for the King and for the public. During the opening these posters where accompanied by the researchers to explain their research in more detail if questions did arise.
DOCUMENT
Anaerobic digestion (AD) can play an important role in achieving the renewable energy goals set within the European Union. Within this article the focus is placed on reaching the Dutch local renewable production goal set for the year 2020 with locally available biomass waste flows, avoiding intensive farming and long transport distances of biomass and energy carriers. The bio-energy yields, efficiency and environmental sustainability are analyzed for five municipalities in the northern part of the Netherlands, using three utilization pathways: green gas production, combined heat and power, and waste management. Literature has indicated that there is sufficient bio-energy potential in local waste streams to reach the aforementioned goal. However, the average useful energy finally produced by the AD production pathway is significantly lower, often due to poor quality biomass and difficult harvesting conditions. Furthermore, of the potential bio-energy input in the three utilization pathways considered in this article, on average: 73% can be extracted as green gas; 57% as heat and power; and 44% as green gas in the waste management pathway. This demonstrates that the Dutch renewable production goal cannot be reached. The green gas utilization pathway is preferable for reaching production goals as it retains the highest amount of energy from the feedstock. However, environmental sustainability favors the waste management pathway as it has a higher overall efficiency, and lower emissions and environmental impacts. The main lessons drawn from the aforementioned are twofold: there is a substantial gap between bio-energy potential and net energy gain; there is also a gap between top–down regulation and actual emission reduction and sustainability. Therefore, a full life cycle-based understanding of the absolute energy and environmental impact of biogas production and utilization pathways is required to help governments to develop optimal policies serving a broad set of sustainable objectives. Well-founded ideas and decisions are needed on how best to utilize the limited biomass availability most effectively and sustainably in the near and far future, as biogas can play a supportive role for integrating other renewable sources into local decentralized energy systems as a flexible and storable energy source.
DOCUMENT
Biogas produced through Anaerobic Digestion can be seen as a flexible and storable energy carrier. However, the environmental sustainability and efficiency of biogas production is not fully understood. Within this article the use, operation, structure, validation, and results of a model for the environmental assessment of anaerobic biogas production pathways is discussed. The (Excel) BioGas Simulator or EBS model is capable of calculating the economic cost, efficiency, carbon footprint, and sustainability of small scale anaerobic digestion biogas production pathways (from 2000 up to 50000 ton/a biomass input). The results from the model are expressed in four main indicators: the economic cost in Net Present Value (NPV), the efficiency in Process Energy Returned On Invested or (P)EROI, the carbon footprint in Global Warming potential 100 year scale (GWP100), and the environmental impact in EcoPoints. The economic indicator is given in Euros in Net Present Value over a period of 25 years, the other indicators are given per Giga Joule of energy produced (e.g. kgCO2eq/GJ). The EBS model is based on a clear methodology, structured around the modular approach, energy and material flow analysis, and life cycle analysis. The modular approach separates the biogas production pathway into individual physical processes, which makes the model more transparent, flexible in use, and programmable with different settings. The aforementioned allows the research of several aspects of the biogas production pathway. Furthermore, the indication of sustainability in four clear indicators gives an understandable reference for comparison with other scenarios. Overall, the EBS model can help give insight on the sustainability of specific biogas production pathways and help indicate options for improvement. Results from the model indicate that from an energy efficiency and sustainability point of view, the anaerobic digestion process should be utilized for treating locally available waste feedstocks with the added advantage of producing energy, which should preferentially be used internally for powering the waste treatment process.
LINK
Anaerobic digestion (AD) can play an important role in achieving renewable goals set within the Netherlands which strives for 40 PJ bio-energy in the year 2020. This research focusses on reaching this goal with locally available biomass waste flows (e.g. manures, grasses, harvest remains, municipal organic wastes). Therefore, the bio-energy yields, process efficiency and environmental sustainability are analyzed for five municipalities in the northern part Netherlands, using three utilization pathways: green gas production; combined heat and power; and waste management. Results indicate that the Dutch goal cannot be filled through the use of local biomass waste streams, which can only reach an average of 20 PJ. Furthermore renewable goals and environmental sustainability do not always align. Therefore, understanding of the absolute energy and environmental impact of biogas production pathways is required to help governments form proper policies, to promote an environmentally and social sustainable energy system.
DOCUMENT
The need to reduce carbon emissions calls for more use of renewable generation, particularly distributed resources. The intermittency of renewable generation, and concerns about energy security, require us to become more independent of central grid operation by use of local or regional (micro-grid) electricity systems. Distributed generation, allied to the commercial availability of battery storage products, permits this–the pathway to energy autonomy. This paper reviews the contribution of different renewable energy sources (RES), trends in energy storage technologies to enable energy autonomy, and the centralised and decentralised techniques that coordinate the associated energy management. The paper covers energy autonomy at different scales, ranging from household levels to district levels. The improvements in grid independency are measured accordingly. There is discussion of this measurement and of the economic and ecological benefits from energy autonomy in the context of policy frameworks.
DOCUMENT
New Dutch agrifood business models are emerging in response to economic, social and ecological pressures: new players arrive, new logistical pathways come to the fore and innovative consumer and farmer relationships – food coöperatives – are forged. How do new business models relate to reconfiguring the Dutch agrifood system? Our research combines future exploration (backcasting) and analysis of new business models. We developed three agrifood transition scenarios with various groups of stakeholders. For each scenario, we then analysed a specific, representative business model to explore the different roles of business models in agrifood transition. Business models in the “Added value in and with the countryside” already exist and occupy a niche in the market. However, a breakthrough of these business models require large-scale institutional and behavioural change. Business models in the “New products, specific markets” exist but are rare. They usually concern high-value specialist products that could result in widespread market change, but might require little institutional change. The “Sustainable production methods” most resembles the current system. Some associated business models become successful, but they have difficulty distinguishing themselves from conventional produce, which raises questions about whether business models are able to drive a transition in this direction. Thus, our results lend credence to the hypothesis that different transition pathways offer specific potential for and requirements of new business models.
DOCUMENT