De Europese energiekosten zijn torenhoog. “Wegduiken in de hoop dat het wel goed komt, is onmogelijk geworden nadat Draghi opschreef wat niemand in Brussel durfde te zeggen. De nieuwe EU-commissie publiceert nu het “Action Plan for Affordable Energy”, dat een waslijst aan voorstellen en voornemens bevat waar iedereen wel iets van zijn gading in kan vinden. De cynici niet uitgezonderd. Ik zie het glas als half vol.”
LINK
Energy efficiency has gained a lot of prominence in recent debates on urban sustainability and housing policy due to its potential consequences for climate change. At the local, national and also international level, there are numerous initiatives to promote energy savings and the use of renewable energy to reduce the environmental burden. There is a lot of literature on energy saving and other forms of energy efficiency in housing. However, how to bring this forward in the management of individual housing organisations is not often internationally explored. An international research project has been carried out to find the answers on management questions of housing organisations regarding energy efficiency. Eleven countries have been included in this study: Germany, the United Kingdom (more specifically: England), France, Sweden, Denmark, the Netherlands, Switzerland, Slovenia, the Czech Republic, Austria and Canada. The state of the art of energy efficiency in the housing management of non-profit housing organisations and the embedding of energy efficiency to improve the quality and performance of housing in management practices have been investigated, with a focus on how policy ambitions about energy efficiency are brought forward in investment decisions at the estate level. This paper presents the conclusions of the research
DOCUMENT
Far from being negligible in quantity, decentralized energy production delivers a considerable part of the renewable energy production in the Netherlands. Decentralized production takes place by individual households, companies as well as citizen groups. Grassroots initiatives have sprung up in the Netherlands in the last 5 years, in a recent inventory 313 formally instituted local energy cooperatives were found. Cooperatives’ aims are sustainability, strengthening local economy and promoting a democratic governance structure for energy production.The energy industry in the Netherlands has traditionally been dominated by large energy companies, and the Groningen gas field has resulted in a very high dependency on natural gas for both consumer and business households. The climate for grassroots initiatives has improved since the so-called Energy Covenant in 2013. This covenant pertains to an agreement between government, industry representatives, labor unions and non-governmental organizations to arrive at a substantial reduction of energy use, ambitious increase in the production of renewable energy, and new jobs in the renewable energy sector.The covenant also announced new policies to stimulate community energy activities, such as the Zip-code-rose policy . The governmental interest in new forms of energy transition, is also demonstrated by the ‘Experiments Electricity Law’ facility, which gives local business and community initiatives an opportunity to experiment with a local energy system. This policy is meant as a ‘learning facility’; experiences are expected to lead to adaptations in Dutch electricity law and regulation.
DOCUMENT
The energy transition requires the transformation of communities and neighbourhoods. It will have huge ramifications throughout society. Many cities, towns and villages have put together ambitious visions about how to achieve e.g. energy neutrality, zero-emission or zero-impact. What is happening at the local level towards realizing these ambitions? In a set of case study’s we investigate the following questions: How are self-organized local energy initiatives performing their self-set tasks? What obstacles are present in the current societal set-up that can hinder decentralized energy production? In our cases local leadership, vision, level of communication and type of organisation are important factors of the strength of the ‘local network’. (Inter)national energy policy and existing energy companies largely determine the ‘global’ or outside network. Stronger regional and national support structures, as well as an enabling environment for decentralized energy production, are needed to make decentralized sustainable energy production a success.
DOCUMENT
Lectorale redeboekje naar aanleiding van de intrede in het lectoraat Systeemintegratie in de energietransitie
MULTIFILE
This century, greenhouse gas emissions such as carbon dioxide, methane and nitrogen oxides must be significantly reduced. Greenhouse gases absorb and emit infrared radiation that contributes to global warming, which can lead to irreversible negative consequences for humans and the environment. Greenhouse gases are caused by the burning of fossil fuels such as crude oil, coal, and natural gas, but livestock farming, and agriculture are also to blame. In addition, deforestation contributes to more greenhouse gases. Of the natural greenhouse gases, water vapor is the main cause of the greenhouse effect, accounting for 90%. The remaining 10% is caused from high to low by carbon dioxide, methane, nitrogen oxides, chlorofluorocarbons, and ozone. In addition, there are industrial greenhouse gases such as fluorinated hydrocarbons, sulphurhexafluoride and nitrogen trifluoride that contribute to the greenhouse effect too. Greenhouse gases are a major cause of climate change, with far-reaching consequences for the welfare of humans and animals. In some regions, extreme weather events like rainfall are more common, while others are associated with more extreme heat waves and droughts. Sea level rise caused by melting ice and an increase in forest fires are undesirable effects of climate change. Countries in low lying areas fear that sea level rise will force their populations to move to the higher lying areas. Climate change is affecting the entire world. An estimated 30-40% o f the carbon dioxide released by the combustion of fossil fuels dissolves into the surface water resulting in an increased concentration of hydrogen ions. This causes the seawater to become more acidic, resulting in a decreasing of carbonate ions. Carbonate ions are an important building block for forming and maintaining calcium carbonate structures of organisms such as oysters, mussels, sea urchins, shallow water corals, deep sea corals and calcareous plankton.
MULTIFILE
This report is a deliverable of the ESTRAC “Case Studies Regional Energy Transition” project, commissioned and funded by the research institute Energy Systems Transition Centre (ESTRAC). ESTRAC is a joint initiative of knowledge and research institutes in the Netherlands – including TNO, ECN (since April 2018 part of TNO), University of Groningen, Hanze University of Applied Sciences, the New Energy Coalition (NEC) and, more recently, PBL – as well as associated partners including Gasunie, Gasterra, EBN and NAM. In addition to funding from the ESTRAC partners, the Case Studies Regional Energy Transition project has benefitted from funding by the Green Deal program of the Dutch government.
DOCUMENT
Contribution to the conference: International Conference on New Pathways for Community Energy and Storage, 6-7 June 2019ABSTRACTThe community renewable energy is often seen as the way to address the societal challenge of energy transition. Many scholars foresee a key role for community energy in accelerating of the energy transition from fossil to renewable energy sources. For example, some authors investigated the transformative role of community renewable energy in the energy transition process (Seyfang and Smith, 2007; Seyfang and Haxeltine 2012; Seyfang et al. 2013; Seyfang et al. 2014; Smith et al. 2017; Martiskainen, 2017; Ruggiero et al. 2018; Hasanov and Zuidema, 2018; de Boer et al. 2018). Recognising the importance of community energy many scholars studied different internal and external conditions that contribute or hinder the success of local renewable energy initiatives (Walker et al. 2007; Bomberg and McEwen, 2012; Seyfang et al. 2013; Wirth, 2014; Hasanov and Zuidema, 2018; Ruggiero et al. 2018). One of such conditions contributing to the success of community energy initiatives is the capacity to adopt and utilize new technologies, for example, in the area of energy storage, which would increase flexibility and resilience of the communal energy supply systems.However, as noted by Ruggiero et al. (2018), the scholarship remains unclear on “how a very diverse and relatively small sector such as community energy could scale up and promote a change in the dominant way of energy production”. What is then the real transformative power of local renewable energy initiatives and whether community energy can offer an alternative to the existing energy system? This paper aims to answer these questions by confronting the critical review of theory with the recent practice of community energy in the Netherlands to build and scale up independent and self-sustaining renewable energy supply structures on the local and national scale and drafting perspectives on the possible role of community energy in the new energy system.
DOCUMENT
Abstract: The transition towards renewable and sustainable energy is being accompanied by a transformation of communities and neighbourhoods. This transition may have huge ramifications throughout society. Many cities, towns and villages are putting together ambitious visions about how to achieve 100% sustainable energy, energy neutrality, zero carbon emission or zero-impact of their communities. We investigate what is happening at the local community level towards realizing these ambitions from a social perspective. We use the case study approach to answer the following question: how do local community energy initiatives contribute to a decentralized sustainable energy system? We find that especially the development of a shared vision, the level of activities and the type of organisation are important factors of the strength of the ‘local network’.
DOCUMENT
In this chapter communicative interventions on the energy transition will be presented according to the research model, from A to Sustainability, that includes the following steps, urgency, awareness, action & collective action, public support and in dialogue with society. The research model is discussed as well as various points interesting for communication researchers and professionals. At the end of the chapter some discussion points are issued.
MULTIFILE