The ever increasing technological developments and greater demands from our society for qualitative better, safer, sustainable products, processes and systems are pushing the boundaries of what is possible from an engineer’s perspective. Besides the (local) grand challenges in energy, sustainability, health and mobility the world is getting smaller due to advances in communication and digitalization. The exponential increase of complexity and data driven systems (big data) which are integrated and connected to different networks calls for rethinking and inventing new business models [1]. To stay competitive in the world OEM’s and SME’s have to develop breakthrough technological, innovative and advanced systems and processes. These changes have a major impact on engineering education. The industry needs engineers with different competences and skills to fulfil the challenges and demands mentioned earlier. Universities should follow up on these changes and can only deliver and prepare the engineers of the future by close collaboration with the high tech industry. Fontys University is fully aware of this and developed a Centre of Expertise in High Tech Systems & Materials (CoE HTSM) to close the gap between the university and industry. This CoE is a public-private cooperation where applied research, projects and educational programs for different curricula are being developed and executed. By making the industry partner and giving them a role within the university, the engineering education programs and the future engineering profile can be better aligned in a faster and more structural way.
This conversation between Geert Lovink and Nikita Lin reflects upon our inner experiences within the global networked digital cultures. It explores the tactics, aesthetic and political, in response to the breakdowns brought by digital platforms and the possibility of creating new beginnings through persistent engagement in writing and publishing. Since 2004 Lovink is heading the Institute of Network Cultures at the Amsterdam University of Applied Sciences and is Art and Network Cultures Professor of Art and Network Cultures at University of Amsterdam’s Art History Department. The conversation takes as point of departure Lovink’s three recent books: Sad by Design: On Platform Nihilism, Stuck on the Platform: Reclaiming the Internet, and Extinction Internet: Our Inconvenient Truth Moment. Over the past 30 years, Lovink has been experimenting with the networks and the internet in his writing by developing a distinct style that dig into essays, interviews, aphorisms, sloganisms, and memes. This includes critical concepts that he has developed-such as ‘tactical media,’ ‘net criticism,' ‘sad by design,’ and ‘internet extinction’ – that people recognize, find useful and ready to apply to their own activities. For Geert Lovink, the fascinating question with writing is how to capture fast-changing real-time phenomena which means not only documenting but also leaving room for anticipation.
The past two years I have conducted an extensive literature and tool review to answer the question: “What should software engineers learn about building production-ready machine learning systems?”. During my research I noted that because the discipline of building production-ready machine learning systems is so new, it is not so easy to get the terminology straight. People write about it from different perspectives and backgrounds and have not yet found each other to join forces. At the same time the field is moving fast and far from mature. My focus on material that is ready to be used with our bachelor level students (applied software engineers, profession-oriented education), helped me to consolidate everything I have found into a body of knowledge for building production-ready machine learning (ML) systems. In this post I will first define the discipline and introduce the terminology for AI engineering and MLOps.
LINK
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations
The PhD research by Joris Weijdom studies the impact of collective embodied design techniques in collaborative mixed-reality environments (CMRE) in art- and engineering design practice and education. He aims to stimulate invention and innovation from an early stage of the collective design process.Joris combines theory and practice from the performing arts, human-computer interaction, and engineering to develop CMRE configurations, strategies for its creative implementation, and an embodied immersive learning pedagogy for students and professionals.This lecture was given at the Transmedia Arts seminar of the Mahindra Humanities Center of Harvard University. In this lecture, Joris Weijdom discusses critical concepts, such as embodiment, presence, and immersion, that concern mixed-reality design in the performing arts. He introduces examples from his practice and interdisciplinary projects of other artists.About the researchMultiple research areas now support the idea that embodiment is an underpinning of cognition, suggesting new discovery and learning approaches through full-body engagement with the virtual environment. Furthermore, improvisation and immediate reflection on the experience itself, common creative strategies in artist training and practice, are central when inventing something new. In this research, a new embodied design method, entitled Performative prototyping, has been developed to enable interdisciplinary collective design processes in CMRE’s and offers a vocabulary of multiple perspectives to reflect on its outcomes.Studies also find that engineering education values creativity in design processes, but often disregards the potential of full-body improvisation in generating and refining ideas. Conversely, artists lack the technical know-how to utilize mixed-reality technologies in their design process. This know-how from multiple disciplines is thus combined and explored in this research, connecting concepts and discourse from human-computer interaction and media- and performance studies.This research is a collaboration of the University of Twente, Utrecht University, and HKU University of the Arts Utrecht. This research is partly financed by the Dutch Research Council (NWO).Mixed-reality experiences merge real and virtual environments in which physical and digital spaces, objects, and actors co-exist and interact in real-time. Collaborative Mix-Reality Environments, or CMRE's, enable creative design- and learning processes through full-body interaction with spatial manifestations of mediated ideas and concepts, as live-puppeteered or automated real-time computer-generated content. It employs large-scale projection mapping techniques, motion-capture, augmented- and virtual reality technologies, and networked real-time 3D environments in various inter-connected configurations.This keynote was given at the IETM Plenary meeting in Amsterdam for more than 500 theatre and performing arts professionals. It addresses the following questions in a roller coaster ride of thought-provoking ideas and examples from the world of technology, media, and theatre:What do current developments like Mixed Reality, Transmedia, and The Internet of Things mean for telling stories and creating theatrical experiences? How do we design performances on multiple "stages" and relate to our audiences when they become co-creators?Contactjoris.weijdom@hku.nl / LinkedIn profileThis research is part of the professorship Performative Processes