To find, design and create solutions to global challenges, 21st century engineering professionals work in multi-disciplinary and international teams that are expected to work effectively, efficiently and innovatively. Universities are following this trend, as they acknowledge the importance of soft skills for employability. The integration of soft skills in higher education curricula is not straightforward, especially in engineering education. At our university, soft skills courses score low in student satisfaction surveys. This is the reason why we study the motivation, attitude and anxiety of computer engineering students toward learning soft skills. To do so, we performed a quantitative study using an online survey based on the mini-AMBT. Overall, our data indicate that computer engineering students have a positive motivation and attitude toward learning soft skills from both an integrative and an instrumental perspective. The obtained results do not give clear insights as to what causes the low satisfaction scores for soft skill courses. All of the above calls for further, qualitative research. We studied the motivation and attitude of computer engineering students in a Dutch university of applied sciences; the motivation and attitude of students in other disciplines and countries may differ and should be studied separately. Full text for members of IEEE : https://ieeexplore.ieee.org/abstract/document/8363231/
DOCUMENT
Before the start and during the first weeks of their first year, it has been observed by teachers that engineering students start with a high level of motivation, which often seems to decrease during the course of the first semesters. Such a decrease in motivation can be a main driver for students dropping out of University early. A qualitative research will be carried out to answer the main questions that have been raised within the engineering department of the Fontys University of Applied sciences: to what extent does a decrease in the motivation of first-year students exists, exactly when during the course of the first year does this decrease occur and what are the underlying reasons causing this decline in motivation? Gaining more insight in the motivation drop of students could result in modifications to the curriculum. The final objectives are reducing the dropout level of students in the first year and increasing the quality level of young propaedeutics. In [1] and [2] studies are carried out to measure student’s motivation constructs, which have been carried out for first year Engineering students. The authors describe a certain level of motivation drop for first year students at an Engineering University. In Geraedts 2010 [3] it is defined that Maslow rules for students can be seen as an element of a student’s perception onto his or hers education. Often it can be observed that in most cases undergraduates start their education as an unconscious insufficient competent student having a very limited view on the work arena and complexity of the engineering discipline. Quickly after the start of the education year this view develops into a more defined perception of what the content and complexity of the future work field is and what is expected of the student during his or hers education. It is hypothesised that this gain in insights of the student into the work field and the related expectations is a significant contributor to the decline of intrinsic motivation. In this paper the investigated hypothesis and possible other aspects that influence the motivation of students will be presented. Based on results, potential corrective and preventive measures will be defined and discussed. Corrective and predictive measures depend on the results of this study and could be aimed for instance at: 1) making adjustments to the content and/or structure of the first semester curriculum, 2) improving the support of students in making adaptations into a better learning strategy and 3) improve the information on-which students decide to start a mechanical engineering education. This paper will focus on the first year mechanical engineering students of the Fontys University of Applied Sciences. About 100 first year students will be questioned using predefined questionnaires and additionally 20 of them will be interviewed for validation. References [1] Brett D. Jones, Marie C. Paretti, Serge F. Hein, Tamarra W. Knott, An analysis of Motivation Constructs with first-Year Engineering students, Journal of Engineering Education; Oct 2010; 99, 4; Research Library pg. 319 [2] L. Benson, A Kirn, B. Morkos, CAREER: Student Motivation and Learning in Engineering, 120th ASEE annual conference & Exposition June 2013 [3] HGM Geraedts (2010) Innovative learning for innovation ISBN 978-90-5284-624-8 4751
DOCUMENT
We found out that 25 % of our students came to study at the Electrical & Electronic Engineering department (E&E) because they were active (as a hobby) in music. Because of this the E&E department offers their students to work in video and audio themes in all projects of their education. From our inquiries we found out what students interests are and we use these interests for new project themes. The study has been changed in such a way that it is possible to have these project themes twice in every semester. Amongst them are, besides music, e.g. medical, sports, automotive and mechatronics. Other inquiries show that 47 % of our students choose for ICT because they are interested in computers or programming or do this for their hobby. Inspired by this the ICT department defined four new fields of interest: game design, management & security, mobile computing and life style. Both E&E and ICT connect the projects in their courses directly to industry and in this way students and lecturers are intensively involved in industry. From two surveys we learned that working this way is an excellent way to get students motivated and gives them drive and enjoyment in their study.
DOCUMENT
This paper addresses an approach to teaching embedded systems programming through a challenge-based competition involving robots. This pedagogical project distinguishes itself by incorporating international students from three international institutions through the Blended Intensive Program (BIP). The research findings indicate that this approach yields excellent results regarding student engagement and learning outcomes. The challenge-based program effectively promotes students' creative problem-solving abilities by combining theoretical instruction with hands-on experience in a competitive setting.
DOCUMENT
The pace of introduction of new technology and thus continuous change in skill needs at workplaces, especially for the engineers, has increased. While digitization induced changes in manufacturing, construction and supply chain sectors may not be felt the same in every sector, this will be hard to escape. Both young and experienced engineers will experience the change, and the need to continuously assess and close the skills gap will arise. How will we, the continuing engineering educators and administrators will respond to it? Prepared for engineering educators and administrators, this workshop will shed light on the future of continuing engineering education as we go through exponentially shortened time frames of technological revolution and in very recent time, in an unprecedented COVID-19 pandemic. S. Chakrabarti, P. Caratozzolo, E. Sjoer and B. Norgaard.
DOCUMENT
The importance of teaching engineering students innovation development is commonly clearly understood. It is essential to achieve products which are attractive and profitable in the market. To achieve this, an institute of engineering education has to provide students with needed knowledge, skills and attitudes including both technical and business orientation. This is important especially for SME’s. Traditionally, education of engineering provides students with basic understanding how to solve common technical problems. However companies need wider view to achieve new products. Universities of applied Sciences in Oulu and Eindhoven want to research what is the today’s educational situation for this aim, to find criteria to improve the content of the educational system, and to improve the educational system. Important stakeholders are teachers and students within the institute but also key-persons in companies. The research is realized by questionnaires and interviews from which a current situation can be found. The research will also include the opinion of management who give possibilities to change the curriculum. By this research more insight will be presented about how to re-design a current curriculum. The research will act as basis for this discussion in SEFI-conference about formulating a curriculum that includes elements for wide-ranging knowledge and skills to achieve innovations especially in SME’s.
DOCUMENT
Additions to the book "Systems Design and Engineering" by Bonnema et.al. Subjects were chosen based on the Systems Engineering needs for Small and Medium Enterprises, as researched in the SESAME project. The
MULTIFILE
This paper describes a model for education in innovative engineering. The kernel of this model is, that students from different departments of the faculty of Applied Science and Technology are placed in industry for a period of eighteen months after two-and-a-half year of theoretical studies. During this period students work in multi-disciplinary projects on different themes. Students will grow to fully equal employees in industry. Therefore it is important that besides students, teachers and company employees will participate in the projects. Also the involvement of other level students (University and high school) is recommended. The most important characteristics of the model can be summarized in innovative, interdisciplinary and international orientation.
DOCUMENT
First year students Aeronautical Engineering had the opportunity to enter a five days program to enhance their mathematical skills. The program had 55 participants. Our research questions were: What are the effects of participation in the summer school program on math skills? Do participants experience more motivation and academic self-esteem after participation? Do dropout rates differ between participating and non-participating students? Do participants differ from non-participating students in motivation or academic self-esteem? We presented the results at the European First Year Experience in Cork, Ireland.
DOCUMENT
In the fall of 1999, an international integrated product development pilot project based on collaborative engineering was started with team members in two international teams from the United States, The Netherlands and Germany. Team members interacted using various Internet capabilities, including, but not limited to, ICQ (means: I SEEK YOU, an internet feature which immediately detects when somebody comes "on line"), web phones, file servers, chat rooms and Email along with video conferencing. For this study a control group with all members located in the USA only also worked on the same project.
DOCUMENT