The interaction of stakeholders is regarded key in modern environmental and spatial planning. Marine/maritime spatial planning (MSP) is an emerging marine policy domain, which is of great interest worldwide. MSP practices are characterized by diverse approaches and a lack of transnational cooperation. Actors with various backgrounds have to identify mismatches and synergies to jointly aim towards coherent and coordinated practices. The ‘Living Q’ is a communication method to make actors aware systematically about their viewpoints in an interactive, communicative and playful environment, while it draws on results of a proceeding ‘Q Methodology’ study. Results from ‘Living Q’ exercises with international expert’s groups from European Sea basins show that the method is capable to foster communication and interaction among actors participating in ‘Living Q’ exercises, while having the potential to generate added value to planning processes by actor interaction in a collaborative setting.
LINK
The phenomena of urbanization and climate change interact with the growing number of older people living in cities. One of the effects of climate change is an increased riverine flooding hazard, and when floods occur this has a severe impact on human lives and comes with vast economic losses. Flood resilience management procedures should be supported by a combination of complex social and environmental vulnerability assessments. Therefore, new methodologies and tools should be developed for this purpose. One way to achieve such inclusive procedures is by incorporating a social vulnerability evaluation methodology for environmental and flood resilience assessment. These are illustrated for application in the Polish city of Wrocław. Socio-environmental vulnerability mapping, based on spatial analyses using the poverty risk index, data on the ageing population, as well as the distribution of the areas vulnerable to floods, was conducted with use of a location intelligence system combining Geographic Information System (GIS) and Business Intelligence (BI) tools. The new methodology allows for the identification of areas populated by social groups that are particularly vulnerable to the negative effects of flooding. C 2018 SETAC Original Publication: Integr Environ Assess Manag 2018;14:592–597. DOI: https://doi.org/10.1002/ieam.4077
MULTIFILE
This chapter addresses environmental education as an important subject of anthropological inquiry and demonstrates how ethnographic research can contribute to our understanding of environmental learning both in formal and informal settings. Anthropology of environmental education is rich in ethnographies of indigenous knowledge of plants and animals, as well as emotional and religious engagement with nature passed on through generations. Aside from these ethnographies of informal environmental education, anthropological studies can offer a critical reflection on the formal practice of education, especially as it is linked to development in non-Western countries. Ethnographic and critical studies of environmental education will be discussed as one of the most challenging directions of environmental anthropology of the future. This is an Accepted Manuscript of a book chapter published by Routledge/CRC Press in "Environmental Anthropology: Future Directions" on 7/18/13 available online: https://doi.org/10.4324/9780203403341 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.
Project aimsNorthSEE aims to achieve greater coherence in Maritime Spatial Planning (processes; MSP) and in Maritime Spatial Plans (outcomes/solutions), capturing synergies and preventing incompatibilities in the North Sea Region (NSR). The project seeks to create better conditions for sustainable development of the area in the fields of shipping, energy and environmental protection. NorthSEE is possible thanks to the financial support from the Interreg North Sea Region programme of the European Union (European Regional Development Fund).Project tasks and resultsTo suggest a multi-level coordination framework capable of supporting ongoing coordination in MSP across the NSR in the long term. To develop an information and planning platform for MSP, enabling planners and stakeholders to share evidence for MSP and test different planning options in the form of scenarios based on real data. The MSP Challenge computer-supported simulation game will became this platform. To increase the capacity of stakeholders in key transnational sectors to actively contribute to MSP To align approaches for taking into account wider environmental issues in MSP To facilitate greater transnational coherence in MSP with respect to offshore energy infrastructure To achieve greater transnational coherence in using MSP to support environmental protection objectives. To facilitate greater transnational coherence in MSP with respect to shipping routes.Our roleThe Academy for Digital Entertainment (ADE) of Breda University of Applied Sciences is a full partner in this project. ADE is responsible for designing and developing the MSP Challenge simulation game concerning the NSR, as well as facilitating its application, all with the aim of developing insights befitting the project aims and thus Maritime Spatial Planning in the North Sea Region (see task 2). We therefore work closely with all NorthSEE partners to define the right requirements and ensure that the simulation game fulfills them. Multiple MSP Challenge sessions are planned to help develop insightful future scenarios and useful planning solutions for the NSR. More information about MSP Challenge is available on NorthSEE (https://northsearegion.eu/northsee) and on its own website (https://www.mspchallenge.info/).