Abstract: Last few years the hindrance, accidents, pollution and other negative side effects of construction projects and namely construction transport have become an issue particularly in urban areas across Europe such as in London, and in the Netherlands as well, including the cities of Utrecht, Rotterdam and Amsterdam. Municipalities have issued new legislation and stricter conditions for vehicles to be able to access cities and city centres in particular and accessibility of older and polluting vehicles. Considerate clients, public as well private, have started developing tender policies to encourage contractors to reduce the environmental impact of construction projects. Contractors and third party logistics providers have started applying consolidation centres. These developments have shown considerable reductions of number of vehicles needed to deliver goods and to transport workers to site. In addition these developments have led to increased transport efficiency, labour productivity and cost reductions on site as well as down the supply chain. Besides these developments have led to increased innovations in the field of logistics planning software, use of ICT , and handling hardware and equipment. This paper gives an overview of current developments and applications in the field of construction logistics in the Netherlands, and in a few project cases in particular. Those cases are underway as part of an ongoing applied research project and studied by using an ethnographic participative action research approach. The case findings and project results show initial advantages how the projects, the firms involved and the environment can profit from the advancement of logistics management leading to reduced environmental impact and increased efficiencies of construction transport.
The phenomena of urbanization and climate change interact with the growing number of older people living in cities. One of the effects of climate change is an increased riverine flooding hazard, and when floods occur this has a severe impact on human lives and comes with vast economic losses. Flood resilience management procedures should be supported by a combination of complex social and environmental vulnerability assessments. Therefore, new methodologies and tools should be developed for this purpose. One way to achieve such inclusive procedures is by incorporating a social vulnerability evaluation methodology for environmental and flood resilience assessment. These are illustrated for application in the Polish city of Wrocław. Socio-environmental vulnerability mapping, based on spatial analyses using the poverty risk index, data on the ageing population, as well as the distribution of the areas vulnerable to floods, was conducted with use of a location intelligence system combining Geographic Information System (GIS) and Business Intelligence (BI) tools. The new methodology allows for the identification of areas populated by social groups that are particularly vulnerable to the negative effects of flooding. C 2018 SETAC Original Publication: Integr Environ Assess Manag 2018;14:592–597. DOI: https://doi.org/10.1002/ieam.4077
MULTIFILE
This chapter addresses environmental education as an important subject of anthropological inquiry and demonstrates how ethnographic research can contribute to our understanding of environmental learning both in formal and informal settings. Anthropology of environmental education is rich in ethnographies of indigenous knowledge of plants and animals, as well as emotional and religious engagement with nature passed on through generations. Aside from these ethnographies of informal environmental education, anthropological studies can offer a critical reflection on the formal practice of education, especially as it is linked to development in non-Western countries. Ethnographic and critical studies of environmental education will be discussed as one of the most challenging directions of environmental anthropology of the future. This is an Accepted Manuscript of a book chapter published by Routledge/CRC Press in "Environmental Anthropology: Future Directions" on 7/18/13 available online: https://doi.org/10.4324/9780203403341 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
The Dutch Environmental Vision and Mobility Vision 2050 promote climate-neutral urban growth around public transport stations, envisioning them as vibrant hubs for mobility, community, and economy. However, redevelopment often increases construction, a major CO₂ contributor. Dutch practice-led projects like 'Carbon Based Urbanism', 'MooiNL - Practical guide to urban node development', and 'Paris Proof Stations' explore integrating spatial and environmental requirements through design. Design Professionals seek collaborative methods and tools to better understand how can carbon knowledge and skills be effectively integrated into station area development projects, in architecture and urban design approaches. Redeveloping mobility hubs requires multi-stakeholder negotiations involving city planners, developers, and railway managers. Designers act as facilitators of the process, enabling urban and decarbonization transitions. CARB-HUB explores how co-creation methods can help spatial design processes balance mobility, attractiveness, and carbon neutrality across multiple stakeholders. The key outputs are: 1- Serious Game for Co-Creation, which introduces an assessment method for evaluating the potential of station locations, referred to as the 4P value framework. 2-Design Toolkit for Decarbonization, featuring a set of Key Performance Indicators (KPIs) to guide sustainable development. 3- Research Bid for the DUT–Driving Urban Transitions Program, focusing on the 15-minute City Transition Pathway. 4- Collaborative Network dedicated to promoting a low-carbon design approach. The 4P value framework offers a comprehensive method for assessing the redevelopment potential of station areas, focusing on four key dimensions: People, which considers user experience and accessibility; Position, which examines the station's role within the broader transport network; Place-making, which looks at how well the station integrates into its surrounding urban environment; and Planet, which addresses decarbonization and climate adaptation. CARB-HUB uses real cases of Dutch stations in transition as testbeds. By translating abstract environmental goals into tangible spatial solutions, CARB-HUB enables scenario-based planning, engaging designers, policymakers, infrastructure managers, and environmental advocates.
The CARTS (Collaborative Aerial Robotic Team for Safety and Security) project aims to improve autonomous firefighting operations through an collaborative drone system. The system combines a sensing drone optimized for patrolling and fire detection with an action drone equipped for fire suppression. While current urban safety operations rely on manually operated drones that face significant limitations in speed, accessibility, and coordination, CARTS addresses these challenges by creating a system that enhances operational efficiency through minimal human intervention, while building on previous research with the IFFS drone project. This feasibility study focuses on developing effective coordination between the sensing and action drones, implementing fire detection and localization algorithms, and establishing parameters for autonomous flight planning. Through this innovative collaborative drone approach, we aim to significantly improve both fire detection and suppression capabilities. A critical aspect of the project involves ensuring reliable and safe operation under various environmental conditions. This feasibility study aims to explore the potential of a sensing drone with detection capabilities while investigating coordination mechanisms between the sensing and action drones. We will examine autonomous flight planning approaches and test initial prototypes in controlled environments to assess technical feasibility and safety considerations. If successful, this exploratory work will provide valuable insights for future research into autonomous collaborative drone systems, currently focused on firefighting. This could lead to larger follow-up projects expanding the concept to other safety and security applications.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.