Service of SURF
© 2025 SURF
ObjectivesTo investigate cartilage tissue turnover in response to a supervised 12-week exercise-related joint loading training program followed by a 6-month period of unsupervised training in patients with knee osteoarthritis (OA). To study the difference in cartilage tissue turnover between high- and low-resistance training.MethodPatients with knee OA were randomized into either high-intensity or low-intensity resistance supervised training (two sessions per week) for 3 months and unsupervised training for 6 months. Blood samples were collected before and after the supervised training period and after the follow-up period. Biomarkers huARGS, C2M, and PRO-C2, quantifying cartilage tissue turnover, were measured by ELISA. Changes in biomarker levels over time within and between groups were analyzed using linear mixed models with baseline values as covariates.ResultshuARGS and C2M levels increased after training and at follow-up in both low- and high-intensity exercise groups. No changes were found in PRO-C2. The huARGS level in the high-intensity resistance training group increased significantly compared to the low-intensity resistance training group after resistance training (p = 0.029) and at follow-up (p = 0.003).ConclusionCartilage tissue turnover and cartilage degradation appear to increase in response to a 3-month exercise-related joint loading training program and at 6-month follow-up, with no evident difference in type II collagen formation. Aggrecan remodeling increased more with high-intensity resistance training than with low-intensity exercise.These exploratory biomarker results, indicating more cartilage degeneration in the high-intensity group, in combination with no clinical outcome differences of the VIDEX study, may argue against high-intensity training.
Author supplied: "Six commercial peanut enzyme-linked immunosorbent assay kits were assessed for their ability to recover peanut from the standard reference material 2387 peanut butter and also for their specificity in detecting four major peanut allergens, Ara h 1, Ara h 2, Ara h 3, and Ara h 6. The percentage recovery of peanut from peanut butter differed across different kits as well as at different sample concentrations. The highest recovery was observed with the Romer and R-Biopharm kits, while four other kits were found to underestimate the protein content of the reference peanut butter samples. Five of the kits were most sensitive in detecting Ara h 3 followed by Ara h 1, while hardly recognizing Ara h 2 and Ara h 6. The other kit showed the highest sensitivity to Ara h 2 and Ara h 6, while Ara h 1 and Ara h 3 were poorly recognized. Although Ara h 2 and Ara h 6 are known to be heat stable and more potent allergens, antisera specific to any of these four peanut proteins/allergens may serve as good markers for the detection of peanut residues."
LINK
Already for some decades lateral flow assays (LFAs) are ‘common use’ devices in our daily life. Also, for forensic use LFAs are developed, such as for the analysis of illicit drugs and DNA, but also for the detection of explosives and body fluid identification. Despite their advantages, including ease-of-use, LFAs are not yet frequently applied at a crime scene. This review describes (academic) developments of LFAs for forensic applications, focusing on biological and chemical applications, whereby the main advantages and disadvantages of LFAs for the different forensic applications are summarized. Additionally, a critical review is provided, discussing why LFAs are not frequently applied within the forensic field and highlighting the steps that are needed to bring LFAs to the forensic market.