A series of new, easily synthesized C60-fullerene derivatives is introduced that allow for optimization of the interactions between rr-P3HT and the fullerene by systematic variation of the size of the ester group. Two compounds gave overall cell efficiencies of 4.8%, clearly outperforming [60]PCBM which gives 4.3% under identical conditions.
DOCUMENT
Currently the advances in the field of 3D printing are causing a revolution in the (bio-)medical field. With applications ranging from patient-specific anatomical models for surgical preparation to prosthetic limbs and even scaffolds for tissue engineering, the possibilities seem endless. Today, the most widely used method is FDM printing. However, there is still a limited range of biodegradable and biocompatible materials available. Moreover, printed implants like for instance cardiovascular stents require higher resolution than is possible to reach with FDM. High resolution is crucial to avoid e.g. bacterial growth and aid to mechanical strength of the implant. For this reason, it would be interesting to consider stereolithography as alternative to FDM for applications in the (bio-) medical field. Stereolithography uses photopolymerizable resins to make high resolution prints. Because the amount of commercially available resins is limited and hardly biocompatible, here we investigate the possibility of using acrylates and vinylesters in an effort to expand the existing arsenal of biocompatible resins. Mechanical properties are tailorable by varying the crosslink density and by varying the spacer length. To facilitate rapid production of high-resolution prints we use masked SLA (mSLA) as an alternative to conventional SLA. mSLA cures an entire layer at a time and therefore uses less time to complete a print than conventional SLA. Additionally, with mSLA it takes the same time to make 10 prints as it would to make only one. Several formulations were prepared and tested for printability and mechanical strength.
MULTIFILE
Fontys en Avans hebben in de afgelopen twee jaar onder meer laagdrempelige test- en onderzoeksmogelijkheden geboden, bijvoorbeeld in de vorm van afstudeerstages. Daarnaast hebben de beide kennisinstellingen een (regionaal) kennisnetwerk voor het MKB gefaciliteerd dat de mogelijkheid biedt om op nieuwe ontwikkelingen te anticiperen. Het is nu mei 2011 en het project loopt ten einde. In de afgelopen twee jaar is er veel bereikt: bedrijven en onderwijsorganisaties hebben elkaar gevonden, er is veel onderzoek gedaan naar nieuwe toepassingen van biopolymeren, aannames zijn getoetst en in het groeiende netwerk van producenten, leveranciers en consumenten van bioplastics is veel kennis gedeeld en uitgewisseld.
DOCUMENT
Composietmaterialen zijn niet meer weg te denken uit de hedendaagse techniek. Niet alleen in de luchtvaart, maar ook in de bouwkunde, civiele techniek, transport en logistiek, scheepvaart, werktuigbouwkunde, en technische bedrijfskunde zal een (hbo) ingenieur vroeg of laat met deze materialen in aanraking komen. Dit boek geeft inzicht in de eigenschappen, vervaardigingsmethoden en ontwerpmethoden die onontbeerlijk zijn om volwaardige oplossingen vorm te geven door slim vezels en matrix te combineren.
DOCUMENT
To locate mating partners and essential resources such as food, oviposition sites and shelter, insects rely to a large extent on chemical cues. While most research has focused on cues derived from plants and insects, there is mounting evidence that indicates that micro‐organisms emit volatile compounds that may play an important role in insect behaviour. In this study, we assessed how volatile compounds emitted by phylogenetically diverse bacteria affected the olfactory response of the primary parasitoid Aphidius colemani and one of its secondary parasitoids, Dendrocerus aphidum. Olfactory responses were evaluated for volatile blends emitted by bacteria isolated from diverse sources from the parasitoid's habitat, including aphids, aphid mummies and honeydew, and from the parasitoids themselves. Results revealed that A. colemani showed a wide variation in response to bacterial volatiles, ranging from significant attraction over no response to significant repellence. Our results further showed that the olfactory response of A. colemani to bacterial volatile emissions was different from that of D. aphidum. Gas chromatography‐mass spectrometry analysis of the volatile blends revealed that bacterial strains repellent to A. colemani produced significantly higher amounts of esters, organic acids, aromatics and cycloalkanes than attractive strains. Strains repellent to D. aphidum produced significantly higher amounts of alcohols and ketones, whereas the strains attractive to D. aphidum produced higher amounts of the monoterpenes limonene, linalool and geraniol. Overall, our results indicate that bacterial volatiles can have an important impact on insect olfactory responses, and should therefore be considered as an additional, so far often overlooked factor in studying multitrophic interactions between plants and insects.
LINK
BACKGROUND: Sour cherry (Prunus cerasus L.) stones are the major byproduct of the cherry industry and the efficient management of this biowaste can lead to achieving the food processing sustainability aimed at by the modern food industry. Despite its significant content of lipids, the valorization of cherry stone waste as feedstock for lipid extraction appears to be limited due to the high moisture content. This study explores the primary factors that affect the yield of lipid extraction using Soxhlet, Randall and supercritical carbon dioxide (scCO2) extraction methods, with a particular emphasis on yield optimization for green extraction technologies (scCO2). RESULTS: The investigation revealed an increased lipid extraction yield for scCO2 from 7.4 for dry crushed stones to 20.6 g per 100 g dry weight when the cherry kernels are separated. The high initial moisture content affected all three extraction methods, but mostly impacted the scCO2 extraction, resulting in the co-extraction of an aqueous phase. Lipid and aqueous yield could be manipulated by time, temperature and pressure. However, no observable influence on the composition of fatty acid methyl esters was detected. CONCLUSION: Numerous approaches are shown to enhance the lipid yield from cherry stone waste, depending on the desired outcome. When dealing with wet samples, Randall extraction proves to be the most effective method. On the other hand, scCO2 extraction presents distinct advantages, such as the extraction of food-grade lipids and the co-extraction of a unique aqueous phase, which comes at the expense of a reduced lipid yield. © 2024 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
DOCUMENT
Using stable isotope techniques, this study shows that plasma free fatty acid oxidation is not impaired during exercise in non-obese type II diabetic patients.
DOCUMENT
Artikel in Agro & Chemie over de productie van exogene ketonen in het projecten Circulaire Biopolymeren Waardeketens voor PHA en Cellulose.
DOCUMENT
Chemo-enzymatic peptide synthesis is unique in enabling the fast and sustainable synthesis of cyclic peptides, complex peptides and functionalized mini-proteins. The starting materials are routinely obtained by solid-phase peptide synthesis. One of the starting materials requires an oxo-ester functionality for recognition by the enzymes active site. The SPPS-based synthesis of the oxo-ester functionality still suffers from significant byproduct formation and low overall synthesis yields. The solution to this is introduction of the oxo-ester functionality at the end of the SPPS via a so-called Passerini reaction. Such a process does not only result in a more efficient production of cyclic or long peptides, but also expand the scope towards proteins derived from biological synthesis (i.e. recombinant proteins). To highlight the relevance of this proposed methodology, we will demonstrate a site-selective modification of the pharmaceutically important drug insulin.
Inhibition of the sodium–glucose cotransporter 2 (SGLT2) by canagliflozin in type 2 diabetes mellitus results in large between-patient variability in clinical response. To better understand this variability, the positron emission tomography (PET) tracer [18F]canagliflozin was developed via a Cu-mediated 18F-fluorination of its boronic ester precursor with a radiochemical yield of 2.0 ± 1.9% and a purity of >95%. The GMP automated synthesis originated [18F]canagliflozin with a yield of 0.5–3% (n = 4) and a purity of >95%. Autoradiography showed [18F]canagliflozin binding in human kidney sections containing SGLT2. Since [18F]canagliflozin is the isotopologue of the extensively characterized drug canagliflozin and thus shares its toxicological and pharmacological characteristics, it enables its immediate use in patients.
DOCUMENT