Biopolymeren vormen een potentieel interessant alternatief voor conventioneel op olie gebaseerde polymeren, omdat zij geen fossiele grondstoffen gebruiken voor de productie. Daarentegen is het productie procedé afhankelijk van energie en toevoegmiddelen die weer bijdragen aan het verbruik van energie en de emissie van onder andere broeikasgassen en zijn de grondstoffen van belang, zoals het gebruik van reststromen uit de afvalverwerking of andere biomaterialen. Binnen het project Circulaire Biopolymeren Waardeketens zijn meerdere productiemethoden bestudeerd om polyhydroxyalkanoaten (PHAs) te maken uit organische reststromen: GFT en afvalwaterslib, een bijproduct uit de afvalwaterzuivering. Productie en extractie van PHAs kan middels diverse routes. In het project zijn meerdere extractieroutes bestudeerd betreffende hun mogelijkheden. Als onderdeel van het project is een levenscyclusanalyse (LCA) gedaan om de milieu-impact van de productie van de biopolymeren in kaart te brengen.
From the article: "A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications. In this work, interdigitated nanogap electrodes (nanogap IDEs) with gaps from 50–250 nm have been designed and processed at full wafer-scale. These nanogap IDEs were then coated with poly(4-vinyl phenol) as a sensitive layer to form gas sensors for acetone detection at low concentrations. These acetone sensors showed excellent sensing performance with a dynamic range from 1000 ppm to 10 ppm of acetone at room temperature and the observed results are compared with conventional interdigitated microelectrodes according to our previous work. Sensitivity and reproducibility of devices are discussed in detail. Our approach of fabrication of nanogap IDEs together with a simple coating method to apply the sensing layer opens up possibilities to create various nanogap devices in a cost-effective manner for gas sensing applications"
Rioolwaterzuiveringen zijn de belangrijkste bron van geneesmiddelen en kunstmatige zoetstoffen in oppervlaktewater. De mate waarin rwzi’s deze organische microverontreinigingen verwijderen, lijkt te variëren van locatie tot locatie en/of in de tijd. Oriënterend onderzoek bij zeven rwzi’s in Groningen en Drenthe toonde aan dat de verwijdering van de zoetstof acesulfaam erg varieerde. Om het verschil in de biologische verwijderingscapaciteit voor acesulfaam en geneesmiddelen te kunnen verklaren, bieden nieuwe DNA-technieken wellicht uitkomst. Met Next Generation Sequencing (NGS) komen verschillen tussen bacteriepopulaties aan het licht die mogelijk verschillen in verwijdering van geneesmiddelen en zoetstoffen kunnen verklaren.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols. Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation. The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol. A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Dit KIEM-VANG project gaat een bijdrage leveren aan het verwerken en beter verwaarden van heterogene biotische afvalstromen zoals restaurantafval. Voor een dergelijke afvalstroom is verwaarden van individuele componenten problematisch en de stroom wordt daarom doorgaans door vergisting omgezet in biogas. Een vloeibare energiedrager als methanol zou hanteerbaarder en attractiever zijn, bijvoorbeeld voor opslag. Bovendien is methanol één van de belangrijkste platformchemicaliën voor de chemische industrie. Methanol wordt nu gemaakt uit aardgas in een duur en complex proces. Dit project beoogt de haalbaarheid van een alternatieve route van biogas naar methanol te onderzoeken: omzetting van biogas naar methanol in een biologische route. De biologische productie van methanol uit biogas draagt bij aan het verminderen van het gebruik van fossiele bronnen en broeikasgasemissies, creëert een nieuwe kringloop van biotisch afval naar hernieuwbare chemische synthese en is potentieel decentraal en kleinschalig toe te passen. Kleinschaligheid impliceert decentrale productie en opslag, vergemakkelijkt de logistiek, vermindert benodigde investeringen en verhoogt tevens de zichtbaarheid voor en daarmee de acceptatie door het grote publiek. Het onderzoek richt zich met literatuurstudie, virtueel prototyping en laboratoriumtesten op de technologische (biologische en/of chemische) parameters die de efficiënte productie van methanol uit biogas bepalen, met aandacht voor katalysatoren, (kunstmatige) enzymen en microbiële omzetting, resulterend in het conceptontwerp van een grote installatie. Daarnaast wordt de economische haalbaarheid en duurzaamheid van biologische methanolproductie onderzocht en vergeleken met bestaande alternatieven in een adaptief rekenmodel met het oog op duurzame inpassing in (kleinschalige) biogasketens. De samenwerkende MKB’s Enki Energie en Physixfactor zien kansen met dit idee hun marktpositie in kleinschalige duurzame energie (Enki) en het doorrekenen van innovatieve installaties (Physixfactor) uit te breiden. Samen met de kennisinstelling Hanze University of Applied Sciences Groningen is een goede aanzet te geven tot een groter vervolgproject met een groter kennisnetwerk van belang en belangstelling hebbende bedrijven en kennisinstellingen.
In Nederland draaien 600.000 industriemotoren in transport, scheepvaart en z.g. Non Road Mobile Machinery (m.n. land- en bosbouw machines en stationaire motoren). Zij verbruiken jaarlijks ongeveer 5 miljard liter diesel, 20%% van het totale dieselverbruik. Ook deze sectoren dienen hun CO2 uitstoot en stikstofuitstoot te reduceren. Kijkend naar mogelijke oplossingen is elektrificatie niet geschikt vanwege het hoge specifiek gevraagde vermogen + kosten. Waterstof is te duur en voor mobiele toepassingen te bewerkelijk. Gesteund door technologie-neutraal klimaatbeleid vanuit de EU (32% hernieuwbare brandstoffen in 2030, waar elektrificatie niet mogelijk is), definieert de sector een voorkeur voor hernieuwbare methanol als marsroute richting emissiereductie. RAAK-MKB project Schoon Schip levert eind 2023 een werkend prototype methanol-conversiekit en manual voor een kleine industriemotor op. Mede door dit succes, groeide het consortium en ontstond een nieuwe vraag: Hoe kan de sector van industriemotoren lokale emissies van het huidige motorenpark van Stage III motoren naar Stage V niveau- en de Well-to-Wheel CO2-uitstoot verlagen met gebruik van hernieuwbare methanol als brandstof? De huidige stand van de techniek laat zien dat in grote (scheepvaart) motoren (<10.000Kw) dual-fuel en uitlaatgasnabehandeling vorm krijgt, voor kleinere industriemotoren is deze techniek nog nauwelijks beschikbaar. De HAN beantwoordt deze marktvraag in 4 werkpakketten om effectieve conversie van een stageIII motor naar StageV emissies te realiseren. Ze maakt hier een vertaalslag van de wetenschap en kennis bij grote zeevaartmotoren, naar (kleinere) industriemotoren. Dit gebeurt door te onderzoeken binnen welke kaders (economisch, emissies, prestaties en levensduur) een prototype motor te ontwikkelen klaar voor lange duurtesten. Brandt Schoon combineert opgedane motorenkennis met kennis uit de academische wereld om tot een betrouwbare toepassing van methanol in de binnenvaart te komen. Het gaat er om tot een werkende praktijkoplossing te komen voor het gebruik van hernieuwbare methanol in het bestaande park van 600.000 industriemotoren.