Exercise is one of the external factors associated with impairment of intestinal integrity, possibly leading to increased permeability and altered absorption. Here, we aimed to examine to what extent endurance exercise in the glycogen‐depleted state can affect intestinal permeability toward small molecules and protein‐derived peptides in relation to markers of intestinal function. Eleven well‐trained male volunteers (27 ± 4 years) ingested 40 g of casein protein and a lactulose/rhamnose (L/R) solution after an overnight fast in resting conditions (control) and after completing a dual – glycogen depletion and endurance – exercise protocol (first protocol execution). The entire procedure was repeated 1 week later (second protocol execution). Intestinal permeability was measured as L/R ratio in 5 h urine and 1 h plasma. Five‐hour urine excretion of betacasomorphin‐7 (BCM7), postprandial plasma amino acid levels, plasma fatty acid binding protein 2 (FABP‐2), serum pre‐haptoglobin 2 (preHP2), plasma glucagon‐like peptide 2 (GLP2), serum calprotectin, and dipeptidylpeptidase‐4 (DPP4) activity were studied as markers for excretion, intestinal functioning and recovery, inflammation, and BCM7 breakdown activity, respectively. BCM7 levels in urine were increased following the dual exercise protocol, in the first as well as the second protocol execution, whereas 1 h‐plasma L/R ratio was increased only following the first exercise protocol execution. FABP2, preHP2, and GLP2 were not changed after exercise, whereas calprotectin increased. Plasma citrulline levels following casein ingestion (iAUC) did not increase after exercise, as opposed to resting conditions. Endurance exercise in the glycogen depleted state resulted in a clear increase of BCM7 accumulation in urine, independent of DPP4 activity and intestinal permeability. Therefore, strenuous exercise could have an effect on the amount of food‐derived bioactive peptides crossing the epithelial barrier. The health consequence of increased passage needs more in depth studies.
Background: Home-based exercise is an important part of physical therapy treatment for patients with low back pain. However, treatment effectiveness depends heavily on patient adherence to home-based exercise recommendations. Smartphone apps designed to support home-based exercise have the potential to support adherence to exercise recommendations and possibly improve treatment effects. A better understanding of patient perspectives regarding the use of smartphone apps to support home-based exercise during physical therapy treatment can assist physical therapists with optimal use and implementation of these apps in clinical practice. Objective: The aim of this study was to investigate patient perspectives on the acceptability, satisfaction, and performance of a smartphone app to support home-based exercise following recommendations from a physical therapist. Methods: Using an interpretivist phenomenology approach, 9 patients (4 males and 5 females; aged 20-71 years) with nonspecific low back pain recruited from 2 primary care physical therapy practices were interviewed within 2 weeks after treatment ended. An interview guide was used for the interviews to ensure that different aspects of the patients' perspectives were discussed. The Physitrack smartphone app was used to support home-based exercise as part of treatment for all patients. Data were analyzed using the "Framework Method" to assist with interpretation of the data. Results: Data analysis revealed 11 categories distributed among the 3 themes "acceptability," "satisfaction," and "performance." Patients were willing to accept the app as part of treatment when it was easy to use, when it benefited the patient, and when the physical therapist instructed the patient in its use. Satisfaction with the app was determined by users' perceived support from the app when exercising at home and the perceived increase in adherence. The video and text instructions, reminder functions, and self-monitor functions were considered the most important aspects for performance during treatment. The patients did not view the Physitrack app as a replacement for the physical therapist and relied on their therapist for instructions and support when needed. Conclusions: Patients who use an app to support home-based exercise as part of treatment are accepting of the app when it is easy to use, when it benefits the patient, and when the therapist instructs the patient in its use. Physical therapists using an app to support home-based exercise can use the findings from this study to effectively support their patients when exercising at home during treatment.
LINK
Background: Home-based exercise is an important part of physical therapy treatment for patients with low back pain. However, treatment effectiveness depends heavily on patient adherence to home-based exercise recommendations. Smartphone apps designed to support home-based exercise have the potential to support adherence to exercise recommendations and possibly improve treatment effects. A better understanding of patient perspectives regarding the use of smartphone apps to support home-based exercise during physical therapy treatment can assist physical therapists with optimal use and implementation of these apps in clinical practice. Objective: The aim of this study was to investigate patient perspectives on the acceptability, satisfaction, and performance of a smartphone app to support home-based exercise following recommendations from a physical therapist. Methods: Using an interpretivist phenomenology approach, 9 patients (4 males and 5 females; aged 20-71 years) with nonspecific low back pain recruited from 2 primary care physical therapy practices were interviewed within 2 weeks after treatment ended. An interview guide was used for the interviews to ensure that different aspects of the patients’ perspectives were discussed. The Physitrack smartphone app was used to support home-based exercise as part of treatment for all patients. Data were analyzed using the “Framework Method” to assist with interpretation of the data. Results: Data analysis revealed 11 categories distributed among the 3 themes “acceptability,” “satisfaction,” and “performance.” Patients were willing to accept the app as part of treatment when it was easy to use, when it benefited the patient, and when the physical therapist instructed the patient in its use. Satisfaction with the app was determined by users’ perceived support from the app when exercising at home and the perceived increase in adherence. The video and text instructions, reminder functions, and self-monitor functions were considered the most important aspects for performance during treatment. The patients did not view the Physitrack app as a replacement for the physical therapist and relied on their therapist for instructions and support when needed. Conclusions: Patients who use an app to support home-based exercise as part of treatment are accepting of the app when it is easy to use, when it benefits the patient, and when the therapist instructs the patient in its use. Physical therapists using an app to support home-based exercise can use the findings from this study to effectively support their patients when exercising at home during treatment.
MULTIFILE
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
Wheelchair users with a spinal cord injury (SCI) or amputation generally lead an inactive lifestyle, associated with reduced fitness and health. Digital interventions and sport and lifestyle applications (E-platforms) may be helpful in achieving a healthy lifestyle. Despite the potential positive effects of E-platforms in the general population, no studies are known investigating the effects for wheelchair users and existing E-platforms can not be used to the same extent and in the same manner by this population due to differences in physiology, body composition, exercise forms and responses, and risk injury. It is, therefore, our aim to adapt an existing E-platform (Virtuagym) within this project by using existing data collections and new data to be collected within the project. To reach this aim we intend to make several relevant databases from our network available for analysis, combine and reanalyze these existing databases to adapt the existing E-platform enabling wheelchair users to use it, evaluate and improve the use of the adapted E-platform, evaluate changes in healthy active lifestyle parameters, fitness, health and quality of life in users of the E-platform (both wheelchair users and general population) and identify determinants of these changes, identify factors affecting transitions from an inactive lifestyle, through an intermediate level, to an athlete level, comparing wheelchair users with the general population, and comparing Dutch with Brazilian individuals. The analysis of large datasets of exercise and fitness data from various types of individuals with and without disabilities, collected over the last years both in the Netherlands and Brazil, is an innovative and potentially fruitful approach. It is expected that the comparison of e.g. wheelchair users in Amsterdam vs. Sao Paulo or recreative athletes vs. elite athletes provides new insight in the factors determining a healthy and active lifestyle.
Wheelchair users with a spinal cord injury (SCI) or amputation generally lead an inactive lifestyle, associated with reduced fitness and health. Digital interventions and sport and lifestyle applications (E-platforms) may be helpful in achieving a healthy lifestyle. Despite the potential positive effects of E-platforms in the general population, no studies are known investigating the effects for wheelchair users and existing E-platforms can not be used to the same extent and in the same manner by this population due to differences in physiology, body composition, exercise forms and responses, and risk injury. It is, therefore, our aim to adapt an existing E-platform (Virtuagym) within this project by using existing data collections and new data to be collected within the project. To reach this aim we intend to make several relevant databases from our network available for analysis, combine and reanalyze these existing databases to adapt the existing E-platform enabling wheelchair users to use it, evaluate and improve the use of the adapted E-platform, evaluate changes in healthy active lifestyle parameters, fitness, health and quality of life in users of the E-platform (both wheelchair users and general population) and identify determinants of these changes, identify factors affecting transitions from an inactive lifestyle, through an intermediate level, to an athlete level, comparing wheelchair users with the general population, and comparing Dutch with Brazilian individuals. The analysis of large datasets of exercise and fitness data from various types of individuals with and without disabilities, collected over the last years both in the Netherlands and Brazil, is an innovative and potentially fruitful approach. It is expected that the comparison of e.g. wheelchair users in Amsterdam vs. Sao Paulo or recreative athletes vs. elite athletes provides new insight in the factors determining a healthy and active lifestyle.