Demand driven expansion of charging infrastructure. Detection of charging infrastructure bottlenecks. Strategic expansion of charging infrastructure.
Voor de komende jaren wordt een toename in elektrisch vervoer voorzien. Naast lichte elektrische vrachtvoertuigen betreft het elektrische bestel- en vrachtwagens met een hoger laadvermogen. Het opladen van die elektrische voertuigen betekent een extra belasting voor de elektrische infrastructuur.Gebruikers weten vaak niet wat ze al aan elektriciteit verbruiken op hun locatie, en (dus) ook niet wat ze nog kunnen uitbreiden met elektrische voertuigen binnen de huidige aansluitvoorwaarden. Door de Hogeschool van Amsterdam is daartoe het EVEC (Electric Vehicle Expansion Calculator) model ontwikkeld. Met informatie over de verschillende laadbehoeften van EV’s en op basis van data van het eigen energieverbruik, (uit de slimme meter of met zelf gemeten data), is met het model inzicht te verkijgen in wat er nog mogelijk is op de locatie.
Agricultural/horticultural products account for 9% of Dutch gross domestic product. Yearly expansion of production involves major challenges concerning labour costs and plant health control. For growers, one of the most urgent problems is pest detection, as pests cause up to 10% harvest loss, while the use of chemicals is increasingly prohibited. For consumers, food safety is increasingly important. A potential solution for both challenges is frequent and automated pest monitoring. Although technological developments such as propeller-based drones and robotic arms are in full swing, these are not suitable for vertical horticulture (e.g. tomatoes, cucumbers). A better solution for less labour intensive pest detection in vertical crop horticulture, is a bio-inspired FW-MAV: Flapping Wings Micro Aerial Vehicle. Within this project we will develop tiny FW-MAVs inspired by insect agility, with high manoeuvrability for close plant inspection, even through leaves without damage. This project focusses on technical design, testing and prototyping of FW-MAV and on autonomous flight through vertically growing crops in greenhouses. The three biggest technical challenges for FW-MAV development are: 1) size, lower flight speed and hovering; 2) Flight time; and 3) Energy efficiency. The greenhouse environment and pest detection functionality pose additional challenges such as autonomous flight, high manoeuvrability, vertical take-off/landing, payload of sensors and other equipment. All of this is a multidisciplinary challenge requiring cross-domain collaboration between several partners, such as growers, biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. In this project a co-creation based collaboration is established with all stakeholders involved, integrating technical and biological aspects.
Hotelschool The Hague (HTH) was founded and funded in 1929 by the hospitality industry to create a hub where industry partners could gain and share new insights, skills and knowledge. Since then, it has become a professional operation with a solid international reputation in hospitality management. Though HTH has expanded considerably over the years, it has always remained true to its original mandate with a clear commitment to hospitality and a strong connection with the industry. Since its establishment, HTH has sharpened its focus, remaining regionally rooted with an increasingly concentrated international outlook. In line with its heritage, HTH established an ambitious research and internationalisation strategy through its Research Center in 2010 and has pursued that strategy ever since. The goals of the strategy are clear: to achieve international recognition for high quality research that has immediate practical application in the real world while driving towards sustainable development facilitated by an expansive international network and learning community. In pursuit of this ambition, HTH finds the perfect opportunity in this Pilot Richting Europa project to advance the progress made in its established research and internationalisation strategy and to focus the expansion of its international network towards industrial, governmental, and other private and public sector partners. Through this project, it is the ambition of HTH to increase the impact of its research area, City Hospitality. City Hospitality is mainly a nationally focussed initiative which would significantly benefit from international exchange with other European cities engaging in hospitality efforts. This will be achieved through (1) the expansion of its network of industrial and governmental partners and networks across Europe and (2) by increasing its participation in cooperative European projects, with the ultimate aim of leading a consortium for a European project by the end of the project year.
Membrane downstream processing (DSP) offers many opportunities to make process water purification, food supplement concentration and fatty acid hydrogenations more sustainable. Zuyd University of Applied Sciences (ZUYD)/Center of Expertise (CoE) CHemelot Innovation and Learning Labs (CHILL) and Utrecht University of Applied Sciences (HU)/ Utrecht Science Park Innovation Lab (I-Lab) will extend their current field labs with (reactor-)membrane set-ups to assist small- and medium-sized enterprises (SMEs) with implementation and dissemination of membrane DSP. Experimental and theoretical scale-up will quantify the membrane DSP contribution to the transition of the chemical industry to become climate neutral. The MEM4CHEM consortium spans the chemical and high tech equipment (HTE) sectors and covers all aspects related to hardware, i.e. reactors, membranes and gas/liquid streams, to implement sustainable innovations for chemical end users. The membrane DSP field labs will be disseminated to extend the research network. In MEM4CHEM the overarching question: How can we implement (reactor-)membrane DSP set-ups in chemical process innovation and disseminate their advantages? and research question: How far can energy/material savings be increased in chemical processes by the use of membrane DSP? will be answered by: i) extending field labs with modular plug-and-play (reactor-)membrane set-ups tailored for the chemical process industry. ii) establishing guidelines for further optimization/upscaling. iii) quantifying energy and material savings using membrane DSP. iv) speeding up industrial implementation of membrane DSP by dissemination, research network expansion, integration of membrane knowledge in education and establishing young professionals as knowledgeable ambassadors. SMEs will be supported by: a) dissemination of the advantages of membrane DSP high tech equipment to facilitate implementation. b) the possibility for SME end users to quantify energy- and material savings in accessible field labs.