OBJECTIVE: The aim of this study was to develop an index for oral hygiene behavior (OHB) and to examine potential predictors of this actual behavior based on the theory of planned behavior (TPB). Measures of oral health knowledge (OHK) and the expected effect of having healthy teeth on social relationships were included too.MATERIAL AND METHODS: Using an Internet questionnaire, 487 participants were asked about actual OHB, attitudes (ATT), social norms (SN), perceived behavioral control (PBC), OHK, and expected social outcomes (ESO). Based on a Delphi method involving oral health professionals, a new index for OHB was developed, including tooth brushing, interdental cleaning, and tongue cleaning.RESULTS: Regression analysis revealed that the TPB variables (ATT, SN, and PBC) and OHK explained 32.3% of the variance in self-reported OHB.CONCLUSION: The present findings indicate that socio-psychological consequences play a role in oral health care.
DOCUMENT
The hospitality industry contributes significantly to global climate change through its high resource consumption and emissions due to travel. As public pressure for hotels to develop sustainability initiatives to mitigate their footprint grows, a lack of understanding of green behavior and consumption of hotel guests hinders the adoption of effective programs. Most tourism research thus far has focused on the ecotourism segment, rather than the general population of travelers, and while research in consumer behavior shows that locus of control (LOC) and guilt can influence guests’ environmental behavior, those factors have not been tested with consideration of the subjective norm to measure their interaction and effect on recycling behavior. This study first examines the importance of internal and external LOC on factors for selecting hotel accommodation and the extent of agreement about hotel practices and, second, examines the differences in recycling behavior among guests with internal versus external LOC under levels of positive versus negative subjective norms and feelings of low versus high guilt.
MULTIFILE
Are tourists who take more photos happier? Our study investigates the relationship between tourists’ photographing and happiness based on two proposed theories: photographing as a behavior that society expects from tourists, and photographing as a mechanism for social interaction. Questionnaires measuring photographic behavior and components of happiness such as positive emotions and life satisfaction were collected from 417 tourists at three destinations in the Netherlands. Additionally, we carried out participant observation to explore the potential roles of fulfilling cultural expectations and social interactions. We found a positive relationship between photography and tourists’ levels of happiness. People who take more pictures on holiday and rate photographing to be important experience more positive emotions and a higher life satisfaction, respectively. The participant observation data reveal that this relationship is strengthened when photography is used to build relationships, but weakened when people photograph to fulfill cultural expectations.
LINK
E-cycling intelligence is a research project directly connected to the PhD-research of Joost de Kruijf at the Utrecht University. Within the program the effects of the introduction of e-bikes in daily commuting are being investigated. Using a large-scale incentive program targeting on behavioral change among car-oriented commuters the next four specific components are being :- Modal shift to e-cycling- Well-being and travel satisfaction of e-bikes vs. car- Weather circumstances and e-cycling- Behavioral intention to e-bike vs. actual behavior Using a combination of three surveys (baseline, one month and half a year) and continuous GPS-measurement on the behavior of more than 800 participants makes this research unique. In collaboration with the TU/e the GPS-dataset is being translated into relevant information on modal shift on different trip purposes offering a new range of possibilities to analyses behavioral change. Knowledge on every of the four topics in the project is translated scientific paper. The expected end of the project is July 2021.With the research not new insights are being gained, the Breda University of Applied Sciences also develops a scientific network of cycling related researchers together with a network of cycling engaged road authorities.
While the creation of an energy deficit (ED) is required for weight loss, it is well documented that actual weight loss is generally lower than what expected based on the initially imposed ED, a result of adaptive mechanisms that are oppose to initial ED to result in energy balance at a lower set-point. In addition to leading to plateauing weight loss, these adaptive responses have also been implicated in weight regain and weight cycling (add consequences). Adaptions occur both on the intake side, leading to a hyperphagic state in which food intake is favored (elevated levels of hunger, appetite, cravings etc.), as well as on the expenditure side, as adaptive thermogenesis reduces energy expenditure through compensatory reductions in resting metabolic rate (RMR), non-exercise activity expenditure (NEAT) and the thermic effect of food (TEF). Two strategies that have been utilized to improve weight loss outcomes include increasing dietary protein content and increasing energy flux during weight loss. Preliminary data from our group and others demonstrate that both approaches - especially when combined - have the capacity to reduce the hyperphagic response and attenuate reductions in energy expenditure, thereby minimizing the adaptive mechanisms implicated in plateauing weight loss, weight regain and weight cycling. Past research has largely focused on one specific component of energy balance (e.g. hunger or RMR) rather than assessing the impact of these strategies on all components of energy balance. Given that all components of energy balance are strongly connected with each other and therefore can potentially negate beneficial impacts on one specific component, the primary objective of this application is to use a comprehensive approach that integrates all components of energy balance to quantify the changes in response to a high protein and high energy flux, alone and in combination, during weight loss (Fig 1). Our central hypothesis is that a combination of high protein intake and high energy flux will be most effective at minimizing both metabolic and behavioral adaptations in several components of energy balance such that the hyperphagic state and adaptive thermogenesis are attenuated to lead to superior weight loss results and long-term weight maintenance.
Thermoset materials find use in almost all industrial sectors, especially where lightweight, stiffness, resistance and dimensional stability are key performance requirements. However, traditional thermosets suffer from several drawbacks: they are made of fossil-based non-reversible polymers and toxic monomers; more importantly, thermosetting materials are virtually neither recyclable nor reprocessable, due to their crosslinked microstructure. Currently, most thermoset materials are incinerated or accumulated in landfills at the end of their life. Landfill waste degrades to liquids known as landfill leachates that lead to health and environmental problems. A significant part of these wastes originate from thermoset materials used in paints, coatings, sealants and adhesives applied as a thin film to all sorts of surfaces. These unrecyclable materials contribute to nano- and microplastic formation. Despite many efforts in the past years in this context, substantial further developments are required. Production of thermosets from biobased feedstocks using safe and sustainable-by-design approaches is therefore crucial to address the well-being of people and to have a healthy planet.SMARTCASE aims to develop safe and circular carbohydrate-derived reactive polyester resins for coatings, adhesives, sealants and elastomers for application in the building and interior sectors. The new two-component (‘2K’) formulations are designed to replace currently used fossil-based epoxy and urethane resins by biobased and GHS-label-friendly alternatives. This not only improves the safety of workers and end-users of these materials, but also reduces the dependency on fossil resources and facilitates the transition towards abundantly available biobased raw materials.A new class of biobased polyesters resins and thermosets will be designed in SMARTCASE using safe and sustainable by design approaches allowing for more sustainable and feasible end-of-life options. Biobased polyesters in general meet the requirements of circularity, as they can be efficiently recycled back to their monomers at end-of-life. Accordingly, the recycling and degradation behavior of the developed formulations under thermal, mechanical and chemical conditions and their biodegradation will be studied. Hence, the output of the project contributes to the main goals of the NGF BioBased Circular program.The project follows a value-cycle approach with a multi-disciplinary and balanced consortium of industrial representatives from every part of the value chain, from carbohydrate feedstock suppliers to resin formulators and end users. This enables a system innovation instead of a (single) product innovation. The following results are expected within 10 years (mostly by the end of the project ): - Sustainable feedstock platform for novel biobased (BB) platform chemicals- Access to novel monomers and building blocks- Access to safe and novel polyester-based resin components- Access to high performance, safe and circular thermoset formulations- Scale-up of the best thermoset formulations- Validated performance of novel thermoset formulations in industrial applications- Sustainable and circular-by-design thermoset formulations with defined end-of-life solutions - Data on LCA, TEA, toxicity and sustainability- Engaged stakeholders and effective dissemination of project outcomes By ensuring these results are implemented by industrial partners both during and after the project, they will benefit not only stakeholders, chemical industries, and consortium partners but also the general public.