As artificial intelligence (AI) reshapes hiring, organizations increasingly rely on AI-enhanced selection methods such as chatbot-led interviews and algorithmic resume screening. While AI offers efficiency and scalability, concerns persist regarding fairness, transparency, and trust. This qualitative study applies the Artificially Intelligent Device Use Acceptance (AIDUA) model to examine how job applicants perceive and respond to AI-driven hiring. Drawing on semi-structured interviews with 15 professionals, the study explores how social influence, anthropomorphism, and performance expectancy shape applicant acceptance, while concerns about transparency and fairness emerge as key barriers. Participants expressed a strong preference for hybrid AI-human hiring models, emphasizing the importance of explainability and human oversight. The study refines the AIDUA model in the recruitment context and offers practical recommendations for organizations seeking to implement AI ethically and effectively in selection processes.
MULTIFILE
The user experience of our daily interactions is increasingly shaped with the aid of AI, mostly as the output of recommendation engines. However, it is less common to present users with possibilities to navigate or adapt such output. In this paper we argue that adding such algorithmic controls can be a potent strategy to create explainable AI and to aid users in building adequate mental models of the system. We describe our efforts to create a pattern library for algorithmic controls: the algorithmic affordances pattern library. The library can aid in bridging research efforts to explore and evaluate algorithmic controls and emerging practices in commercial applications, therewith scaffolding a more evidence-based adoption of algorithmic controls in industry. A first version of the library suggested four distinct categories of algorithmic controls: feeding the algorithm, tuning algorithmic parameters, activating recommendation contexts, and navigating the recommendation space. In this paper we discuss these and reflect on how each of them could aid explainability. Based on this reflection, we unfold a sketch for a future research agenda. The paper also serves as an open invitation to the XAI community to strengthen our approach with things we missed so far.
MULTIFILE
Research into automatic text simplification aims to promote access to information for all members of society. To facilitate generalizability, simplification research often abstracts away from specific use cases, and targets a prototypical reader and an underspecified content creator. In this paper, we consider a real-world use case – simplification technology for use in Dutch municipalities – and identify the needs of the content creators and the target audiences in this scenario. The stakeholders envision a system that (a) assists the human writer without taking over the task; (b) provides diverse outputs, tailored for specific target audiences; and (c) explains the suggestions that it outputs. These requirements call for technology that is characterized by modularity, explainability, and variability. We argue that these are important research directions that require further exploration
MULTIFILE
Bedrijven, waaronder telecomproviders, vertrouwen steeds meer op complexe AI-systemen. Het gebrek aan interpreteerbaarheid dat zulke systemen vaak introduceren zorgt voor veel uitdagingen om het onderliggende besluitvormingsproces te begrijpen. Vertrouwen in AI-systemen is belangrijk omdat het bijdraagt aan acceptatie en adoptie onder gebruikers. Het vakgebied Explainable AI (XAI) speelt hierbij een cruciale rol door transparantie en uitleg aan gebruikers te bieden voor de beslissingen en werking van zulke systemen.Doel Bij AI-systemen zijn gewoonlijk verschillende stakeholders betrokken, die elk een unieke rol hebben met betrekking tot deze systemen. Als gevolg hiervan varieert de behoefte voor uitleg afhankelijk van wie het systeem gebruikt. Het primaire doel van dit onderzoek is het genereren en evalueren van op stakeholder toegesneden uitleg voor use cases in de telecomindustrie. Door best practices te identificeren, nieuwe explainability tools te ontwikkelen en deze toe te passen in verschillende use cases, is het doel om waardevolle inzichten op te doen. Resultaten Resultaten omvatten het identificeren van de huidige best practices voor het genereren van betekenisvolle uitleg en het ontwikkelen van op maat gemaakte uitleg voor belanghebbenden voor telecom use-cases. Looptijd 01 september 2023 - 30 augustus 2027 Aanpak Het onderzoek begint met een literatuurstudie, gevolgd door de identificatie van mogelijke use-cases en het in kaart brengen van de behoeften van stakeholders. Vervolgens zullen prototypes worden ontwikkeld en hun vermogen om betekenisvolle uitleg te geven, zal worden geëvalueerd.
Bedrijven, waaronder telecomproviders, vertrouwen steeds meer op complexe AI-systemen. Het gebrek aan interpreteerbaarheid dat zulke systemen vaak introduceren zorgt voor veel uitdagingen om het onderliggende besluitvormingsproces te begrijpen. Vertrouwen in AI-systemen is belangrijk omdat het bijdraagt aan acceptatie en adoptie onder gebruikers. Het vakgebied Explainable AI (XAI) speelt hierbij een cruciale rol door transparantie en uitleg aan gebruikers te bieden voor de beslissingen en werking van zulke systemen.