Introduction:A space’s atmosphere is an important factor in how that space is experienced. In fact, festival visitors consider the atmosphere as the most important factor in how they experience a festival (Van Vliet 2012). Atmosphere is also what distinguishes physical shops from online web shops (Van Vliet, Moes & Schrandt 2015). Much research underlines the influence of atmosphere on cognitive and emotional processes. As early as 1956, research showed that an assessment of facial expressions in photographs depended on the atmosphere of the space in which the photos were viewed (Maslow & Mintz 1956). The importance of atmosphere inspired the search for ways to influence visitors and allowing them to react to, and even (co-)design, a space’s atmosphere – from museum spaces (Noordegraaf 2012) to urban spaces, from consciously-manipulated spaces to the now inevitable layer of digital information that has entered the public sphere (Mitchell 2005). Researchers have been studying the influence of atmosphere for decades, particularly through the lens of environmental psychology, which focuses on the interplay between humans and their environment (Mehrabian & Russell 1974; Steg, Van den Berg & De Groot 2012). A milestone in atmosphere research was the introduction of the concept of ‘atmospherics’ by Kotler (1973). From here, research into atmosphere mainly took place in the context of marketing research into consumer behaviour in shops and service environments such as restaurants, hotels, museums and festivals (Van Vliet 2014). The question here is whether these gathered insights contribute to understanding how atmosphere works in open public spaces.
MULTIFILE
In this paper we investigate laypersons’ valuation of historic buildings, their experiences of thermal comfort in those buildings and contrast this with their views on the appropriateness of energy efficiency measures. This paper presents four case studies of medieval churches in Groningen, Netherlands. Valuation studies is used to investigate the values that are attached to historic buildings by various stakeholders. We apply the ‘heritage as a spatial vector’ approach, to position heritage in relation to developments in society and the landscape. Our theoretical contribution lies in the combination of heritage approaches and valuation studies. We conclude that for a more balanced assessment of historic buildings, laypersons’ valuations should be further integrated in heritage studies.
As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE