Fast and successful searching for an object in a multimedia database is a highly desirable functionality. Several approaches to content based retrieval for multimedia databases can be found in the literature [9,10,12,14,17]. The approach we consider is feature extraction. A feature can be seen as a way to present simple information like the texture, color and spatial information of an image, or the pitch, frequency of a sound etc. In this paper we present a method for feature extraction on texture and spatial similarity, using fractal coding techniques. Our method is based upon the observation that the coefficients describing the fractal code of an image, contain very useful information about the structural content of the image. We apply simple statistics on information produced by fractal image coding. The statistics reveal features and require a small amount of storage. Several invariances are a consequence of the used methods: size, global contrast, orientation.
The Andean lupin (Lupinus mutabilis) is one of the lost crops of Incas and has been grown in South America and as a food crop for thousands of years. The seeds are the main source of commercial value regarding the high content of oil (about 20%), protein (about 43%) and carbohydrates (about 33%). A European Union H2020 project, LIBBIO, aims to develop and optimize the breeding and cropping of the Andean lupin in the Europe, and to process the lupin seeds for new and high-value products for consumers and for incorporation into otherproducts. This study works at optimizing the oil extraction from the lupin seeds using supercritical carbon dioxide (scCO2), which has been tested for lupin oil extraction and is advantageous over organic extractants due to the mild operating temperature, costeffectiveness, nontoxicity, and easy post-separation.In the study designed by response surface methodology, the operating pressure,temperature, scCO2 flowrate, and sample mesh size, were investigated on their effect on the oil extraction efficiency. The pressure, scCO2 flowrate and mesh size were found to affect the extraction efficiency significantly. The higher the pressure and the smaller the mesh, the more oil was extracted over a specific period. Optimally about 85% of the oil was extracted by scCO2 compared with conventional Soxhlet extraction using hexane as the extractant. Oleicacid (46%) and Linoleic acid (32%) are the two main fatty acids in the extracted oil. About 80% of the fatty acids are unsaturated. The stearic acid is one of the main saturated fatty acids, which has relatively positive effects on human health to others. The pressure was found to significantly affect the fractions of the saturated and unsaturated fatty acids. The content of tocopherols in the extracted oil ranged from 1 to 20 mg/100g oil, which is comparable withliterature value.
A common strategy to assign keywords to documents is to select the most appropriate words from the document text. One of the most important criteria for a word to be selected as keyword is its relevance for the text. The tf.idf score of a term is a widely used relevance measure. While easy to compute and giving quite satisfactory results, this measure does not take (semantic) relations between words into account.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols. Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation. The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol. A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols.Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation.The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol.A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Chemical preservation is an important process that prevents foods, personal care products, woods and household products, such as paints and coatings, from undesirable change or decomposition by microbial growth. To date, many different chemical preservatives are commercially available, but they are also associated with health threats and severe negative environmental impact. The demand for novel, safe, and green chemical preservatives is growing, and this process is further accelerated by the European Green Deal. It is expected that by the year of 2050 (or even as soon as 2035), all preservatives that do not meet the ‘safe-by-design’ and ‘biodegradability’ criteria are banned from production and use. To meet these European goals, there is a large need for the development of green, circular, and bio-degradable antimicrobial compounds that can serve as alternatives for the currently available biocidals/ preservatives. Anthocyanins, derived from fruits and flowers, meet these sustainability goals. Furthermore, preliminary research at the Hanze University of Applied Science has confirmed the antimicrobial efficacy of rose and tulip anthocyanin extracts against an array of microbial species. Therefore, these molecules have the potential to serve as novel, sustainable chemical preservatives. In the current project we develop a strategy consisting of fractionation and state-of-the-art characterization methods of individual anthocyanins and subsequent in vitro screening to identify anthocyanin-molecules with potent antimicrobial efficacy for application in paints, coatings and other products. To our knowledge this is the first attempt that combines in-depth chemical characterization of individual anthocyanins in relation to their antimicrobial efficacy. Once developed, this strategy will allow us to single out anthocyanin molecules with antimicrobial properties and give us insight in structure-activity relations of individual anthocyanins. Our approach is the first step towards the development of anthocyanin molecules as novel, circular and biodegradable non-toxic plant-based preservatives.