The initial trigger of this research about learning from video was the availability of log files from users of video material. Video modality is seen as attractive as it is associated with the relaxed mood of watching TV. The experiments in this research have the goal to gain more insight in viewing patterns of students when viewing video. Students received an awareness instruction about the use of possible alternative viewing behaviors to see whether this would enhance their learning effects. We found that:- the learning effects of students with a narrow viewing repertoire were less than the learning effects of students with a broad viewing repertoire or strategic viewers.- students with some basic knowledge of the topics covered in the videos benefited most from the use of possible alternative viewing behaviors and students with low prior knowledge benefited the least.- the knowledge gain of students with low prior knowledge disappeared after a few weeks; knowledge construction seems worse when doing two things at the same time.- media players could offer more options to help students with their search for the content they want to view again.- there was no correlation between pervasive personality traits and viewing behavior of students.The right use of video in higher education will lead to students and teachers that are more aware of their learning and teaching behavior, to better videos, to enhanced media players, and, finally, to higher learning effects that let users improve their learning from video.
DOCUMENT
Urban renewal and urban area development projects are by nature highly complex processes involving a multiplicity of professionals, stakeholders, and conflicting interests. Adding to this complexity are the formulated ambitions and societal challenges projects have to answer to. One of these ambitions emphasizes a more inclusive planning process, involving the inhabitants in all stages of the planning process. In terms of design, another challenge is to create environments on a human scale while building in high density such as with tall residential buildings. The metropolitan area of Amsterdam intends to have 100,000 new dwellings by 2025. Most of these dwellings have to be added within the existing urban fabric, planned on obsolete inner-city brownfield locations, at the waterfront, nearby highways whereas others are going to be built in deprived neighborhoods. The deprived neighborhoods are mainly located in the postwar areas of Amsterdam, on its northern, western, and south-eastern sides. The deprived neighborhood called the Bijlmermeer located on the south-eastern side of the city, for instance was the first high-rise development project in the Netherlands. It was designed as a single project with identical high-rise buildings in a hexagonal grid surrounded with large green spaces.These deprived, modernistic neighborhoods lack the classic housing block structures with a clear articulation of buildings and street spaces. They appear to be responsible for an ‘inhuman’ scale and demonstrate the lasting impact critical design flaws can have on the daily lives of inhabitants. Hence, the question is how to develop liveable environments where people feel fully supported by building architecture and streetscape configuration. To prevent new urban area developments that will again fail to incorporate human scale, scientific methods and user input are needed to inform the practice of planning and design, and their applied design solutions. Building on two research projects (one on participatory planning and the other on neuroarchitecture research), we explore how the newly emerging field of neuroarchitecture - and the eye-tracker in particular, might enhance urban area developments on a human scale.
DOCUMENT
DOCUMENT
Er is al redelijk wat kennis ten aanzien van kijkgedrag in de sport, maar deze inzichten hebben voornamelijk betrekking op statische situaties. Momenteel zijn er onderzoeken gaande die inzicht proberen te krijgen in het kijkgedrag tijdens dynamische sportsituaties. Dit artikel beschrijft aan de hand van een onderzoek binnen het hockey welke uitdagingen er daarbij zijn.
DOCUMENT
The accelerated densification of Western European cities driven by economic growth has major spatial implications for their overall livability. Often, new homes must be built within an existing urban fabric, creating higher density environments. However, the impact on the experience of these high-density environments at eye level remains unstudied and unknown. This chapter reviews two experiments that sought to understand the unconscious reception of streetscapes using eye-tracking technology to investigate the sequence of users’ (visual) experience, their behavior and perception. The research project seeks to establish more ‘evidence-based’ design guidelines for streetscapes in high-rise urban settings.This chapter reviews two experiments that sought to understand the unconscious reception of streetscapes using eye-tracking technology to investigate the sequence of users’ experience, their behavior and perception. Eye-tracking results of Experiment 1 show that the movement of pedestrians, cyclists and cars crossing the street created the most eye fixation for most participants. In general, the eye-tracking results from Experiment 2 show that participants’ eyes followed the length of the facades toward the end of the street and the horizon. The preliminary results suggest that the assessed design principles ‘Active ground floor’ and ‘Ornate facades’ might be important factors in predicting dominant eye patterns. The chapter explores the application of eye-tracking technology in urban design to gain a deeper understanding of the physical-behavioral interrelationship of streetscapes in European high-density built environments. The accelerated densification of Western European cities driven by economic growth has major spatial implications for their overall livability.
DOCUMENT
Hoe schept de fysieke ruimte de juiste condities voor haar gebruikers? Dit is een terugkerende uitdaging bij iedere gebiedsontwikkeling en herontwikkeling. In de huidige tijd is het temeer urgent vanwege de vergaande verdichting van onze steden, de stedelijke vernieuwing en de introductie van nieuwe 'on-Nederlandse' woonmilieus. Zo verdubbelt het aantal woontorens van boven de honderd meter de komende zes jaar. Hoe zorgen we dat die nieuwe fysieke ruimtes een leefbare woonomgeving creëren? Deze vraag is specifiek relevant voor het schaalniveau van de straat. Dat is onze gedeelde publieke ruimte en maken we dagelijks 'de sociale stad'. Nieuwe biometrische technologie biedt de kans om de relatie tussen fysiek en sociaal beter in beeld te krijgen.
MULTIFILE
In foul decision-making by football referees, visual search is important for gathering task-specific information to determine whether a foul has occurred. Yet, little is known about the visual search behaviours underpinning excellent on-field decisions. The aim of this study was to examine the on-field visual search behaviour of elite and sub-elite football referees when calling a foul during a match. In doing so, we have also compared the accuracy and gaze behaviour for correct and incorrect calls. Elite and sub-elite referees (elite: N = 5, Mage ± SD = 29.8 ± 4.7yrs, Mexperience ± SD = 14.8 ± 3.7yrs; sub-elite: N = 9, Mage ± SD = 23.1 ± 1.6yrs, Mexperience ± SD = 8.4 ± 1.8yrs) officiated an actual football game while wearing a mobile eye-tracker, with on-field visual search behaviour compared between skill levels when calling a foul (Nelite = 66; Nsub−elite = 92). Results revealed that elite referees relied on a higher search rate (more fixations of shorter duration) compared to sub-elites, but with no differences in where they allocated their gaze, indicating that elites searched faster but did not necessarily direct gaze towards different locations. Correct decisions were associated with higher gaze entropy (i.e. less structure). In relying on more structured gaze patterns when making incorrect decisions, referees may fail to pick-up information specific to the foul situation. Referee development programmes might benefit by challenging the speed of information pickup but by avoiding pre-determined gaze patterns to improve the interpretation of fouls and increase the decision-making performance of referees.
DOCUMENT
The aim of the current study was twofold: (1) to validate the use of action sport cameras for quantifying focus of visual attention in sailing and (2) to apply this method to examine whether an external focus of attention is associated with better performance in upwind sailing. To test the validity of this novel quantification method, we first calculated the agreement between gaze location measures and head orientation measures in 13 sailors sailing upwind during training regattas using a head mounted eye tracker. The results confirmed that for measuring visual focus of attention in upwind sailing, the agreement for the two measures was high (intraclass correlation coefficient (ICC) = 0.97) and the 95% limits of agreement were acceptable (between -8.0% and 14.6%). In a next step, we quantified the focus of visual attention in sailing upwind as fast as possible by means of an action sport camera. We captured sailing performance, operationalised as boat speed in the direction of the wind, and environmental conditions using a GPS, compass and wind meter. Four trials, each lasting 1 min, were analysed for 15 sailors each, resulting in a total of 30 upwind speed trials on port tack and 30 upwind speed trials on starboard tack. The results revealed that in sailing - within constantly changing environments - the focus of attention is not a significant predictor for better upwind sailing performances. This implicates that neither external nor internal foci of attention was per se correlated with better performances. Rather, relatively large interindividual differences seem to indicate that different visual attention strategies can lead to similar performance outcomes.
DOCUMENT
Many students persistently misinterpret histograms. This calls for closer inspection of students’ strategies when interpreting histograms and case-value plots (which look similar but are diferent). Using students’ gaze data, we ask: How and how well do upper secondary pre-university school students estimate and compare arithmetic means of histograms and case-value plots? We designed four item types: two requiring mean estimation and two requiring means comparison. Analysis of gaze data of 50 students (15–19 years old) solving these items was triangulated with data from cued recall. We found five strategies. Two hypothesized most common strategies for estimating means were confirmed: a strategy associated with horizontal gazes and a strategy associated with vertical gazes. A third, new, count-and-compute strategy was found. Two more strategies emerged for comparing means that take specific features of the distribution into account. In about half of the histogram tasks, students used correct strategies. Surprisingly, when comparing two case-value plots, some students used distribution features that are only relevant for histograms, such as symmetry. As several incorrect strategies related to how and where the data and the distribution of these data are depicted in histograms, future interventions should aim at supporting students in understanding these concepts in histograms. A methodological advantage of eye-tracking data collection is that it reveals more details about students’ problem-solving processes than thinking-aloud protocols. We speculate that spatial gaze data can be re-used to substantiate ideas about the sensorimotor origin of learning mathematics.
LINK
Graphs are ubiquitous. Many graphs, including histograms, bar charts, and stacked dotplots, have proven tricky to interpret. Students’ gaze data can indicate students’ interpretation strategies on these graphs. We therefore explore the question: In what way can machine learning quantify differences in students’ gaze data when interpreting two near-identical histograms with graph tasks in between? Our work provides evidence that using machine learning in conjunction with gaze data can provide insight into how students analyze and interpret graphs. This approach also sheds light on the ways in which students may better understand a graph after first being presented with other graph types, including dotplots. We conclude with a model that can accurately differentiate between the first and second time a student solved near-identical histogram tasks.
DOCUMENT