Digital surveillance technologies using artificial intelligence (AI) tools such as computer vision and facial recognition are becoming cheaper and easier to integrate into governance practices worldwide. Morocco serves as an example of how such technologies are becoming key tools of governance in authoritarian contexts. Based on qualitative fieldwork including semi-structured interviews, observation, and extensive desk reviews, this chapter focusses on the role played by AI-enhanced technology in urban surveillance and the control of migration between the Moroccan–Spanish borders. Two cross-cutting issues emerge: first, while international donors provide funding for urban and border surveillance projects, their role in enforcing transparency mechanisms in their implementation remains limited; second, Morocco’s existing legal framework hinders any kind of public oversight. Video surveillance is treated as the sole prerogative of the security apparatus, and so far public actors have avoided to engage directly with the topic. The lack of institutional oversight and public debate on the matter raise serious concerns on the extent to which the deployment of such technologies affects citizens’ rights. AI-enhanced surveillance is thus an intrinsically transnational challenge in which private interests of economic gain and public interests of national security collide with citizens’ human rights across the Global North/Global South divide.
MULTIFILE
African citizens are increasingly being surveilled, profiled, and targeted online in ways that violate their rights. African governments frequently use pandemic or terrorism-related security risks to grant themselves additional surveillance rights and significantly increase their collection of monitoring apparatus and technologies while spending billions of dollars to conduct surveillance (Roberts et al. 2023). Surveillance is a prominent strategy African governments use to limit civic space (Roberts and Mohamed Ali 2021). Digital technologies are not the root of surveillance in Africa because surveillance practices predate the digital age (Munoriyarwa and Mare 2023). Surveillance practices were first used by colonial governments, continued by post-colonial governments, and are currently being digitalized and accelerated by African countries. Throughout history, surveillance has been passed down from colonizers to liberators, and some African leaders have now automated it (Roberts et al. 2023). Many studies have been conducted on illegal state surveillance in the United States, China, and Europe (Feldstein 2019; Feldstein 2021). Less is known about the supply of surveillance technologies to Africa. With a population of almost 1.5 billion people, Africa is a continent where many citizens face surveillance with malicious intent. As mentioned in previous chapters, documenting the dimensions and drivers of digital surveillance in Africa is
MULTIFILE
In this project, the AGM R&D team developed and refined the use of a facial scanning rig. The rig is a physical device comprising multiple cameras and lighting that are mounted on scaffolding around a 'scanning volume'. This is an area at which objects are placed before being photographed from multiple angles. The object is typically a person's head, but it can be anything of this approximate size. Software compares the photographs to create a digital 3D recreation - this process is called photogrammetry. The 3D model is then processed by further pieces of software and eventually becomes a face that can be animated inside in Unreal Engine, which is a popular piece of game development software made by the company Epic. This project was funded by Epic's 'Megagrant' system, and the focus of the work is on streamlining and automating the processing pipeline, and on improving the quality of the resulting output. Additional work has been done on skin shaders (simulating the quality of real skin in a digital form) and the use of AI to re/create lifelike hair styles. The R&D work has produced significant savings in regards to the processing time and the quality of facial scans, has produced a system that has benefitted the educational offering of BUas, and has attracted collaborators from the commercial entertainment/simulation industries. This work complements and extends previous work done on the VIBE project, where the focus was on creating lifelike human avatars for the medical industry.