Background Fall prevention programs have been proven effective in reducing falls and fall-related injuries in specific target groups and settings. However, implementing these programs on a larger scale often requires adjustments for feasibility. This study assessed the effectiveness of a nationally implemented fall prevention intervention compared to usual care in community-dwelling older adults. Methods This single-blinded, multicentre randomized controlled trial included 264 community-dwelling non- and pre-frail adults, aged 65 years or older with an increased fall risk. The intervention group participated in the In Balance intervention and the control group received general physical activity recommendations. Primary outcomes were the number of falls and fall-related injuries over 12 months. Secondary outcomes included the Timed Up and Go and Four Stage Balance Test, and the 36-Item Short Form Health Survey. We imputed missing data by multiple imputation, and analysed outcomes using generalized linear- and linear mixed-effects models. Analyses were done for the total group and stratified for frailty status. Results The mean number of falls per person over 12 months was not statistically different between the intervention and control group (respectively 1.67 (SE 0.24) and 1.98 (0.37); incidence rate ratio 0.85 (95% CI 0.51-1.43)), nor the mean number of fall-related injuries (respectively 0.70 (SE 0.11) and 0.97 (0.18); incidence rate ratio 0.73 (95% CI 0.44-1.19)). Secondary outcomes also showed no significant differences between group, frailty status and over time. Conclusions Although the number of falls and fall-related injuries was lower among In Balance participants, and balance, mobility, physical function, and emotional well-being improved, these differences were not statistically significant. Impact statement The implemented In Balance program appears to be less effective than a priori assumed, possibly due to insufficient adherence to the program in practice.
DOCUMENT
BACKGROUND: Falls and fall-related injuries among older adults are a serious threat to the quality of life and result in high healthcare and societal costs. Despite evidence that falls can be prevented by fall prevention programmes, practical barriers may challenge the implementation of these programmes. In this study, we will investigate the effectiveness and cost-effectiveness of In Balance, a fourteen-week, low-cost group fall prevention intervention, that is widely implemented in community-dwelling older adults with an increased fall risk in the Netherlands. Moreover, we will be the first to include cost-effectiveness for this intervention. Based on previous evidence of the In Balance intervention in pre-frail older adults, we expect this intervention to be (cost-)effective after implementation-related adjustments on the target population and duration of the intervention.METHODS: This study is a single-blinded, multicenter randomized controlled trial. The target sample will consist of 256 community-dwelling non-frail and pre-frail adults of 65 years or older with an increased risk of falls. The intervention group receives the In Balance intervention as it is currently widely implemented in Dutch healthcare, which includes an educational component and physical exercises. The physical exercises are based on Tai Chi principles and focus on balance and strength. The control group receives general written physical activity recommendations. Primary outcomes are the number of falls and fall-related injuries over 12 months follow-up. Secondary outcomes consist of physical performance measures, physical activity, confidence, health status, quality of life, process evaluation and societal costs. Mixed model analyses will be conducted for both primary and secondary outcomes and will be stratified for non-frail and pre-frail adults.DISCUSSION: This trial will provide insight into the clinical and societal impact of an implemented Dutch fall prevention intervention and will have major benefits for older adults, society and health insurance companies. In addition, results of this study will inform healthcare professionals and policy makers about timely and (cost-)effective prevention of falls in older adults.TRIAL REGISTRATION: Netherlands Trial Register: NL9248 (registered February 13, 2021).
DOCUMENT
BACKGROUND: Physical activity may be both a risk and protective factor for falls and fall-related fractures. Despite its positive effects on muscle and bone health, physical activity also increases exposure to situations where falls and fractures occur. This paradox could possibly be explained by frailty status. Therefore, the aim of this study was to investigate the associations between physical activity and both falls and fractures, and to determine whether frailty modifies the association of physical activity with falls, and fractures.METHODS: Data of 311 community-dwelling participants aged 75 years or older from the Longitudinal Aging Study Amsterdam, who participated in a three-year longitudinal study with five nine-monthly measurements between 2015/2016 and 2018/2019. Their mean age was 81.1 (SD 4.8) years and frailty was present in 30.9% of the participants. Physical activity in minutes per day was objectively assessed with an inertial sensor (Actigraph) for seven consecutive days. Falls and fractures were assessed every nine months using self-report during an interview over a follow-up period of three years. Frailty was determined at baseline using the frailty index. Associations were estimated using longitudinal logistic regression analyses based on generalized estimating equations.RESULTS: No association between physical activity and falls was found (OR = 1.00, 95% CI: 0.99-1.00). Fall risk was higher in frail compared to non-frail adults (OR = 2.21, 95% CI: 1.33-3.68), but no effect modification was seen of frailty on the association between physical activity and falls. Also no relation between physical activity and fractures was found (OR = 1.00, 95% CI: 0.99-1.01). Fracture risk was higher in frail compared to non-frail adults (OR = 2.81, 95% CI: 1.02-7.75), but also no effect modification of frailty was present in the association between physical activity and fractures.CONCLUSIONS: No association between physical activity and neither falls nor fractures was found, and frailty appeared not to be an effect modifier. However, frailty was a risk factor for falls and fractures in this population of older adults. Our findings suggest that physical activity can be safely recommended in non-frail and frail populations for general health benefits, without increasing the risk of falls.
MULTIFILE
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
In this project, Photons in Focus, researchers from The Hague University of Applied Sciences will work together with the company Photosynthetic to fabricate high-quality microlenses that will optimally focus light onto microscopic light detectors. Specifically, the microlenses will be designed to focus light onto superconducting nanowire single-photon detectors (SNSPDs) from the company Single Quantum. SNSPDs are cryogenic single-photon detectors with photon detection efficiencies up to 99% and timing resolutions down to 15 picosecond. Recently, Single Quantum has been developing arrays of SNSPDs for free-space biomedical imaging and deep space communications. The photon detection efficiency of these arrays is suboptimal, because 15-20% of the light falls onto nonsensitive areas. In Photons in Focus, fabrication of two types of microstructures will be explored for optimally focusing light onto these SNSPDs and improving the photon detection efficiency. First, 3-dimensional microlenses will be created at Photosynthetic using their method of dual-wavelength volumetric microlithography. Second, phase-reversal Fresnel zone plates will be fabricated using standard 2-dimensional photolithography at The Hague University of Applied Sciences. Both types of microstructures will be tested for their focusing properties and potential optical losses, and their ability to enhance to photon detection efficiency of SNSPDs in cryogenic conditions.
Bicycle manufacturing currently falls behind the fast technological developments in automotive industries. We propose to design, develop and test a smart cycling eco-system where bicycles communicate in realtime with each other, and with the urban transport infrastructure (e.g. traffic lights) to optimize the use and improve traffic safety, economical value, and efficiency. This require technologies and mechanisms to allow monitoring the bike, understanding the cyclist and the context, as well as data sharing between cyclists, industry, service providers, government, and urban planners. The new eco-system can drive decision-making, behaviour incentivisation, and ultimately investment, across government, and beyond. A key ingredient is an AI-enabled IoT ecosystem in which data is securely collected, shared, processed in combination with other data sources, and made available to establish new services. This allows to reliably identify relevant events (like dangerous situations), detect trends (like decreasing performance of components, allowing maintenance to be performed in time), and give new insights to the user (such as health and performance).