Muscle fiber-type specific expression of UCP3-protein is reported here for the firts time, using immunofluorescence microscopy
DOCUMENT
Background: Previous studies found that 40-60% of the sarcoidosis patients suffer from small fiber neuropathy (SFN), substantially affecting quality of life. SFN is difficult to diagnose, as a gold standard is still lacking. The need for an easily administered screening instrument to identify sarcoidosis-associated SFN symptoms led to the development of the SFN Screening List (SFNSL). The usefulness of any questionnaire in clinical management and research trials depends on its interpretability. Obtaining a clinically relevant change score on a questionnaire requires that the smallest detectable change (SDC) and minimal important difference (MID) are known. Objectives: The aim of this study was to determine the SDC and MID for the SFNSL in patients with sarcoidosis. Methods: Patients with neurosarcoidosis and/or sarcoidosis-associated SFN symptoms (N=138) included in the online Dutch Neurosarcoidosis Registry participated in a prospective, longitudinal study. Anchor-based and distribution-based methods were used to estimate the MID and SDC, respectively. Results: The SFNSL was completed both at baseline and at 6-months’ follow-up by 89/138 patients. A marginal ROC curve (0.6) indicated cut-off values of 3.5 points, with 73% sensitivity and 49% specificity for change. The SDC was 11.8 points. Conclusions: The MID on the SFNSL is 3.5 points for a clinically relevant change over a 6-month period. The MID can be used in the follow-up and management of SFN-associated symptoms in patients with sarcoidosis, though with some caution as the SDC was found to be higher.
DOCUMENT
Dietary fibers are at the forefront of nutritional research because they positively contribute to human health. Much of our processed foods contain, however, only small quantities of dietary fiber, because their addition often negatively affects the taste, texture, and mouth feel. There is thus an urge for novel types of dietary fibers that do not cause unwanted sensory effects when applied as ingredient, while still positively contributing to the health of consumers. Here, we report the generation and characterization of a novel type of soluble dietary fiber with prebiotic properties, derived from starch via enzymatic modification,yielding isomalto/malto-polysaccharides (IMMPs), which consist of linear (α1 → 6)-glucan chains attached to the nonreducing ends of starch fragments. The applied Lactobacillus reuteri 121 GTFB 4,6-α-lucanotransferase enzyme synthesizes these molecules by transferring the nonreducing glucose moiety of an (α1 → 4)-glucan chain to the nonreducing end of another (α1 → 4)-α-glucan chain, forming an (α1 → 6)-glycosidic linkage. Once elongated in this way, the molecule becomes a better acceptor substrate and is then further elongated with (α1 → 6)-linked glucose residues in a linear way. Comparison of 30 starches, maltodextrins, and α-glucans of various botanical sources, demonstrated that substrates with long and linear (α1 → 4)- glucan chains deliver products with the highest percentage of (α1 → 6) linkages, up to 92%. In vitro experiments, serving as model of the digestive power of the gastrointestinal tract, revealed that the IMMPs, or more precisely the IMMP fraction rich in (α1 → 6) linkages, will largely pass the small intestine undigested and therefore end up in the large intestine. IMMPs are a novel type of dietary fiber that may have health promoting activity.
DOCUMENT
In the high-tech mechatronics world, aluminum and steel are well known materials, while carbon fiber is often neglected. In the RAAK project 'Composites in Mechatronics', the use of carbon fiber composites in mechatronics is investigated.
DOCUMENT
OBJECTIVE: Protein supplementation increases gains in lean body mass following prolonged resistance-type exercise training in frail older adults. We assessed whether the greater increase in lean body mass can be attributed to muscle fiber type specific hypertrophy with concomitant changes in satellite cell (SC) content.DESIGN: A total of 34 frail elderly individuals (77 ± 1 years, n = 12 male adults) participated in this randomized, double-blind, placebo-controlled trial with 2 arms in parallel.INTERVENTION: Participants performed 24 weeks of progressive resistance-type exercise training (2 sessions per week) during which they were supplemented twice-daily with milk protein (2 × 15 g) or a placebo.METHODS: Muscle biopsies were taken at baseline, and after 12 and 24 weeks of intervention, to determine type I and type II muscle fiber specific cross-sectional area (CSA), SC content, and myocellular characteristics.RESULTS: In the placebo group, a trend for a 20% ± 11% increase in muscle fiber CSA was observed in type II fibers only (P = .051), with no increase in type I muscle fiber CSA. In the protein group, type I and II muscle fiber CSA increased by 23% ± 7% and 34% ± 10% following 6 months of training, respectively (P < .01). Myonuclear domain size increased over time in both groups and fiber types (P < .001), with no significant differences between groups (P > .05). No changes in myonuclear content and SC contents were observed over time in either group (both P > .05). Regression analysis showed that changes in myonuclear content and domain size are predictive of muscle fiber hypertrophy.CONCLUSIONS: Protein supplementation augments muscle fiber hypertrophy following prolonged resistance-type exercise training in frail older people, without changes in myonuclear and SC content.
DOCUMENT
Stricter environmental policies, increased energy prices and depletion of resources are forcing industries to look for bio-based and low carbon footprint products. For industries, flax is interesting resource since it is light, strong, environmental friendly and renewable. From flax plant to fiber products involves biochemical and mechanical processes. Moreover, production and processing costs have to compete with other products, like petroleum based materials. This research focusses on sustainable process improvement from flax plant to fiber production. Flax retting is a biological process at which mainly pectin is removed. Without retting, the desired fibre remains attached to the wooden core of the flax stem. As a result, the flax fibres cannot be gained, or have a lows quality. After retting, the fibers are released from the wooden core. Furthermore, machines have been introduced in the flax production process, but the best quality fibers are still produced manually. Due to the high labor intensity the process is too expensive and the process needs to be economical optimized. Since the retting process determines all other downstream processes, retting is the first step to focus on. Lab-scale experiments were performed to investigate the retting process. Factors that were researched were low cost processing conditions like, temperature, pH, dew retting and water retting. The retting rate was low, around three weeks for complete retting. The best retting conditions were at 20°C with water and any addition of chemicals. The process could be shortened to two weeks by recycling the water phase. In a scale-up experiment, a rotating drum was used at the optimal conditions from the lab-experiment (20°C and water). First the flax did not mix with the water content in the rotating drum. The flax was too rigid and did not tumble. Therefore, bundles of flax plants were used. The inner core of the bundle seemed to be protected and the retting rate was less compared to the flax on the surface of the flax bundle. This implies that mechanical impact increased retting in the rotating drum, however heterogeneous retting should be avoided. To overcome the heterogeneous retting problem, a water column was used to improve heterogeneous retting. Retting was performed in a water column and mixing was accomplished by bubbling air. As a result of the mixing, the flax bundle was retted homogenously. And after drying, it was possible to separate the fibers from the wooden flax core. Retting with a bubble column can overcome this problem and seems to be a usable retting process step. Water samples of the lab-scale experiments, the rotating drum and the bubble column showed a chemical oxygen demand (COD) content up to 4 g/L. Overall, 1 kg Flax resulted in 40 g COD. This indicates the possibility to produce biogas that can be used for generating heat and electricity, to make the process sustainable. Around 50% of the weight consists of wooden shives. The shives can be used for pyrolysis and it was possible to produce around 30% coal and 20% oil. These compounds can be used as building blocks, but also to generate heat and electricity. Heat and electricity can be used for the flax processing. Shives were only dried for 1 day at 105°C and slow pyrolysis was used. This indicates that a higher yield can be expected at fast pyrolysis. Overall, the reported implicates that quality fiber production from flax plant can be a feasible, sustainable and a renewable production process. Feasibility of the process can be obtained by, (1) retting at low-cost process conditions of 20°C and using water without any addition of chemicals, (2) with increased flax retting rate by recycling water, (3) with increased flax retting rate by introducing mixing forces, and the ability to lower the energy consumption of the overall process, (4) producing biogas from the COD with anaerobic digestion and (5) producing pyrolysis oil and pyrolysis c
MULTIFILE
Optimizing physical performance is a major goal in current physiology. However, basic understanding of combining high sprint and endurance performance is currently lacking. This study identifies critical determinants of combined sprint and endurance performance using multiple regression analyses of physiologic determinants at different biologic levels. Cyclists, including 6 international sprint, 8 team pursuit, and 14 road cyclists, completed a Wingate test and 15-km time trial to obtain sprint and endurance performance results, respectively. Performance was normalized to lean body mass2/3 to eliminate the influence of body size. Performance determinants were obtained from whole-body oxygen consumption, blood sampling, knee-extensor maximal force, muscle oxygenation, whole-muscle morphology, and muscle fiber histochemistry of musculus vastus lateralis. Normalized sprint performance was explained by percentage of fast-type fibers and muscle volume (R2 = 0.65; P < 0.001) and normalized endurance performance by performance oxygen consumption (V̇o2), mean corpuscular hemoglobin concentration, and muscle oxygenation (R2 = 0.92; P < 0.001). Combined sprint and endurance performance was explained by gross efficiency, performance V̇o2, and likely by muscle volume and fascicle length (P = 0.056; P = 0.059). High performance V̇o2 related to a high oxidative capacity, high capillarization × myoglobin, and small physiologic cross-sectional area (R2 = 0.67; P < 0.001). Results suggest that fascicle length and capillarization are important targets for training to optimize sprint and endurance performance simultaneously.-Van der Zwaard, S., van der Laarse, W. J., Weide, G., Bloemers, F. W., Hofmijster, M. J., Levels, K., Noordhof, D. A., de Koning, J. J., de Ruiter, C. J., Jaspers, R. T. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body.
DOCUMENT
De bever (Castor fiber) is in 1988 in Nederland geherintroduceerd. In het rivieren gebied de Gelderse Poort, waar de eerste bevers in 1994 zijn uitgezet, gaat de verspreiding van de populatie echter langzaam en over de exacte aantallen is niet veel bekend. Een intensieve monitoring was daarom gewenst. Het doel van dit onderzoek is een overzicht krijgen van de populatiegrootte, -structuur, ruimtelijke organisatie en het reproductiesucces van bevers in de Kekerdomse- en Millingerwaard in juli tot en met december 2009. Ook worden verschillende onderzoeksmethoden voor het verkrijgen van nauwkeurige data van een beverpopulatie besproken. Data werd vergaard met behulp van inventarisatie van beversporen in het gebied in combinatie met fotovallen en avondobservaties. Hiermee werden alle burchten en territoria in de waard in kaart gebracht.
DOCUMENT
We report on the calibration and testing of a fiber Bragg grating (FBG)-based 2D-shape sensing strip for real-time monitoring of the position and orientation of the human spine during gait. The strip is evaluated for its use as an input for control of an exoskeleton for patients with spinal cord injury. By measuring the torsion and bending of the back, walking movements can be reconstructed. The 3D-printed strip has nine embedded fiber Bragg gratings that are located at specific places with respect to the vertebral column. Three FBGs are placed opposite to the thoracic vertebrae T6–T9, these FBGs are sensitive for measuring the bending of the spine during the gait cycle. Torsion is measured at two locations: at thoracic vertebra, T3 and at lumbar vertebra, L3. At these locations, the width of the strip is reduced to have a larger sensitivity for torsion. The strain at each FBG is measured using an interrogator. This leads to the radius of curvature and torsion as a function of time. The Frenet-Serret formulae are used to calculate the shape of the strip during the gait cycle. We have calibrated this FBG strip for curvature by bending it at known radius of different curvatures. We found a linear dependence between the strain and curvature. For torsion calibration we have rotated the strip with a stepper motor at different angles and monitored the strain. We, again, found a linear dependence with a small hysteresis. We mounted the strip on a healthy test subject and monitored their gait cycle. The FBG strip shows similar results when compared to a motion capture system based on multiple cameras. Although the fixation of the strip to a garment or on the back directly strongly influences the measured response, it does show a periodic and reproducible signal during the gait cycle.
DOCUMENT
Rapportage van een Offcourse voor kunststudenten waarbij onderzocht is hoe studenten zich kunnen binden met een onbekend landschap en welke bijdrage vervilte wol hierbij kan leveren. Uit de evaluatie blijkt dat studenten gewerkt hebben aan transitievaardigheden en zo gewerkt hebben aan hun innelijke duurzaamheid.
DOCUMENT