There are three volumes in this body of work. In volume one, we lay the foundation for a general theory of organizing. We propose that organizing is a continuous process of ongoing mutual or reciprocal influence between objects (e.g., human actors) in a field, whereby a field is infinite and connects all the objects in it much like electromagnetic fields influence atomic and molecular charged objects or gravity fields influence inanimate objects with mass such as planets and stars. We use field theory to build what we now call the Network Field Model. In this model, human actors are modeled as pointlike objects in the field. Influence between and investments in these point-like human objects are explained as energy exchanges (potential and kinetic) which can be described in terms of three different types of capital: financial (assets), human capital (the individual) and social (two or more humans in a network). This model is predicated on a field theoretical understanding about the world we live in. We use historical and contemporaneous examples of human activity and describe them in terms of the model. In volume two, we demonstrate how to apply the model. In volume 3, we use experimental data to prove the reliability of the model. These three volumes will persistently challenge the reader’s understanding of time, position and what it means to be part of an infinite field. http://dx.doi.org/10.5772/intechopen.99709
DOCUMENT
Supplemental Instruction (SI) is a form of structured peer guidance attached to a specific course, provided by an experienced and trained student to a group of students. Previous studies show a positive effect of SI on learning outcomes, some found effects on well-being, and sense of belonging. However, literature on SI lacks randomized controlled trials and does not fully address the risk of self-selection bias. The current study tested whether SI has an effect on grades, mental well-being, and sense of belonging with a pre-registered randomized field experiment and a sample of 493 Dutch first-year students. Students who were offered SI obtained significantly higher grades (d = 0.26) but did not score significantly different on mental well-being or belonging.
DOCUMENT
De Experience Tool: Mapping facts and practice to develop (spatial) experiences (Moes, Schrandt, Manuputty, Admiraal & van der Mark, 2019), is in eerste instantie ontwikkeld door docent-onderzoekers en een oud-student van het Amsterdam Fashion Institute (AMFI) om studenten beter onderbouwde afwegingen te laten maken over inrichting van bijvoorbeeld metrostations, winkels maar ook tentoonstellingen. De toolkit is dus niet ontwikkeld in het kader van Designing Experiencescapes of De Tentoonstellingsmaker van de 21ste Eeuw, maar deze onderzoeken hebben wel een belangrijke inhoudelijke basis gegeven voor de toolkit en zijn dus zeer relevant voor de (toekomstige) tentoonstellingsmaker. Het doel van deze tool is om spelers te inspireren bij en informeren over het creëren van belevingen in (hoofdzakelijk) fysieke ruimtes. De tool is voor iedereen die geïnteresseerd is in het creëren van belevingen en met name interessant voor studenten die een beleving willen neerzetten, in welke vorm dan ook en professionals uit de museale en de retailsector die invloed hebben op het inrichten van fysieke ruimtes.
MULTIFILE
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
The pressure on the European health care system is increasing considerably: more elderly people and patients with chronic diseases in need of (rehabilitation) care, a diminishing work force and health care costs continuing to rise. Several measures to counteract this are proposed, such as reduction of the length of stay in hospitals or rehabilitation centres by improving interprofessional and person-centred collaboration between health and social care professionals. Although there is a lot of attention for interprofessional education and collaborative practice (IPECP), the consortium senses a gap between competence levels of future professionals and the levels needed in rehabilitation practice. Therefore, the transfer from tertiary education to practice concerning IPECP in rehabilitation is the central theme of the project. Regional bonds between higher education institutions and rehabilitation centres will be strengthened in order to align IPECP. On the one hand we deliver a set of basic and advanced modules on functioning according to the WHO’s International Classification of Functioning, Disability and Health and a set of (assessment) tools on interprofessional skills training. Also, applications of this theory in promising approaches, both in education and in rehabilitation practice, are regionally being piloted and adapted for use in other regions. Field visits by professionals from practice to exchange experiences is included in this work package. We aim to deliver a range of learning materials, from modules on theory to guidelines on how to set up and run a student-run interprofessional learning ward in a rehabilitation centre. All tested outputs will be published on the INPRO-website and made available to be implemented in the core curricula in tertiary education and for lifelong learning in health care practice. This will ultimately contribute to improve functioning and health outcomes and quality of life of patients in rehabilitation centres and beyond.
The AR in Staged Entertainment project focuses on utilizing immersive technologies to strengthen performances and create resiliency in live events. In this project The Experiencelab at BUas explores this by comparing live as well as pre-recorded events that utilize Augmented Reality technology to provide an added layer to the experience of the user. Experiences will be measured among others through observational measurements using biometrics. This projects runs in the Experience lab of BUas with partners The Effenaar and 4DR Studio and is connected to the networks and goals related to Chronosphere, Digireal and Makerspace. Project is powered by Fieldlab Events (PPS / ClickNL)..