Modern manufacturing has to deal with global competition, in which customers have high purchasing power. Production efficiency and rapid response to customer demand are dominant conditions for enterprises to stay successful. Reconfigurable Manufacturing Systems (RMSs) are designed to have a modular architecture in both mechanical design and control system. The architecture enables change of the machine structure quickly, by adding and removing parts of the system, and by changing the corresponding software programming. It can handle short times to market. This paper presents an ‘Index-Method’ to monitor the reconfiguration of RMS. The method is able to categorise the reconfiguration and related development in seven stages. It focusses specifically on the Independence Axiom. The main goal is to find all relevant parameters to cause interactions, and to decouple them. The solution, aiming to be scientifically vigorous and practically applicable, was applied to a true case; the development of a manufacturing system for an inkjet print head for industrial applications. The realisation of the system required the development of new process technology. The index-method may be considered successful. It has the ability to structure the configuration process of RMSs. The method harmonises well with the industry known V-model.
Abstract: Unlike manufacturing technology for semiconductors and printed circuit boards, the market for traditional micro assembly lacks a clear public roadmap. More agile manufacturing strategies are needed in an environment in which dealing with change becomes a rule instead of an exception. In this paper, an attempt is made to bring production with universal micro assembly cells to the next level. This is realised by placing a larger number of cells, called Equiplets, in a “Grid”. Equiplets are compact and low-cost manufacturing platforms that can be reconfigured to a broad number of applications. Benchmarking Equiplet production has shown reduced time to market and a smooth transition from R&D to Manufacturing. When higher production volumes are needed, more systems can be placed in parallel to meet the manufacturing demand. Costs of product design changes in the later stage of industrialisation have been reduced due to the modular production in grids, which allows the final design freeze to be postponed as late as possible. The need for invested capital is also pushed backwards accordingly. doi 10.1007/978-3-642-11598-1_32
LINK
Background: Profiling the plant root architecture is vital for selecting resilient crops that can efficiently take up water and nutrients. The high-performance imaging tools available to study root-growth dynamics with the optimal resolution are costly and stationary. In addition, performing nondestructive high-throughput phenotyping to extract the structural and morphological features of roots remains challenging. Results: We developed the MultipleXLab: a modular, mobile, and cost-effective setup to tackle these limitations. The system can continuously monitor thousands of seeds from germination to root development based on a conventional camera attached to a motorized multiaxis-rotational stage and custom-built 3D-printed plate holder with integrated light-emitting diode lighting. We also developed an image segmentation model based on deep learning that allows the users to analyze the data automatically. We tested the MultipleXLab to monitor seed germination and root growth of Arabidopsis developmental, cell cycle, and auxin transport mutants non-invasively at high-throughput and showed that the system provides robust data and allows precise evaluation of germination index and hourly growth rate between mutants. Conclusion: MultipleXLab provides a flexible and user-friendly root phenotyping platform that is an attractive mobile alternative to high-end imaging platforms and stationary growth chambers. It can be used in numerous applications by plant biologists, the seed industry, crop scientists, and breeding companies.
LINK