Large floating projects have the potential to overcome the challenge of land scarcity in urban areas and offer opportunities for energy and food production, or even for creating sustainable living environments. However, they influence the physical, chemical, biological and ecological characteristics of water bodies. The interaction of the floating platforms affect multiple complex aquatic processes, and the potential (negative/positive) effects are not yet fully understood. Managing entities currently struggle with lack of data and knowledge that can support adequate legislation to regulate future projects. In the Netherlands the development of small scale floating projects is already present for some years (e.g. floating houses, restaurants, houseboats), and more recently several large scale floating photovoltaic plants (FPV) have been realized. Several floating constructions in the Netherlands were considered as case-studies for a data-collection campaign. To obtain data and images from underneath floating buildings, underwater drones were equipped with cameras and sensors. The drones were used in multiple locations to scan for differences in concentrations of basic water quality parameters (e.g. dissolved oxygen, electrical conductivity, algae, light intensity) from underneath/near the floating structures, which were then compared with data from locations far from the influence of the buildings. Continuous data was also collected over several days using multi-parameter water quality sensors permanently installed under floating structures. Results show some differences in concentrations of water quality parameters between open water and shaded areas were detected, and some interesting relations between parameters and local characteristics were identified. Recommendations are given, in order to minimise the undesired impacts of floating platforms. Considering the complexity of the interactions between water quality parameters and the influence of the surrounding environment it is recommended to continue and to improve the monitoring campaign (e.g. include new parameters).
DOCUMENT
Large floating projects have the potential to overcome the challenge of land scarcity in urban areas and offer opportunities for energy and food production, or even for creating sustainable living environments. However, they influence the physical, chemical, biological and ecological characteristics of water bodies. The interaction of the floating platforms affect multiple complex aquatic processes, and the potential (negative/positive) effects are not yet fully understood. Managing entities currently struggle with lack of data and knowledge that can support adequate legislation to regulate future projects.In the Netherlands the development of small scale floating projects is already present for some years (e.g. floating houses, restaurants, houseboats), and more recently several large scale floating photovoltaic plants (FPV) have been realized. Several floating constructions in the Netherlands were considered as case-studies for a data-collection campaign.To obtain data and images from underneath floating buildings, underwater drones were equipped with cameras and sensors. The drones were used in multiple locations to scan for differences in concentrations of basic water quality parameters (e.g. dissolved oxygen, electrical conductivity, algae, light intensity) from underneath/near the floating structures, which were then compared with data from locations far from the influence of the buildings. Continuous data was also collected over several days using multi-parameter water quality sensors permanently installed under floating structures.
DOCUMENT
Floating urbanization is a promising solution to reduce the vulnerability of cities against climate change, population growth or land scarcity. Although this type of construction introduces changes to aquatic systems, there is a lack of research studies addressing potential impacts. Water quality data collected under/near floating structures were compared with the corresponding parameters measured at the same depth at open water locations by (i) performing scans with underwater drones equipped with in situ sensors and video cameras and (ii) fixing two sets of continuous measuring in situ sensors for a period of several days/months at both positions. A total of 18 locations with different types of floating structures were considered in this study. Results show small differences in the measured parameters, such as lower dissolved oxygen concentrations or higher temperature measured underneath the floating structures. The magnitudes of these differences seem to be linked with the characteristics and type of water system. Given the wide variety and types of water bodies considered in this study, results suggest that water quality is not critically affected by the presence of the floating houses. Underwater images of biofouling and filter feeders illustrate the lively ecosystems that can emerge shortly after the construction of floating buildings.
DOCUMENT
The rapid implementation of large scale floating solar panels has consequences to water quality and local ecosystems. Environmental impacts depend on the dimensions, design and proportions of the system in relation to the size of the surface water, as well as the characteristics of the water system (currents, tidal effects) and climatic conditions. There is often no time (and budget) for thorough research into these effects on ecology and water quality. A few studies have addressed the potential impacts of floating solar panels, but often rely on models without validation with in situ data. In this work, water quality sensors continuously monitored key water quality parameters at two different locations: (i) underneath a floating solar park; (ii) at a reference location positioned in open water. An underwater drone was used to obtain vertical profiles of water quality and to collect underwater images. The results showed little differences in the measured key water quality parameters below the solar panels. The temperature at the upper layers of water was lower under the solar panels, and there were less detected temperature fluctuations. A biofouling layer on the floating structure was visible in the underwater images a few months after the construction of the park
DOCUMENT
Floating wetland treatment systems (FWTS) are an innovative stormwater treatment technology currently being trialled on a larger scale in Australia. FWTS provide support for selected plant species to remove pollutants from stormwater discharged into a water body. The plant roots provide large surface areas for biofilm growth, which serves to trap suspended particles and enable the biological uptake of nutrients by the plants. As FWTS can be installed at the start of the construction phase, they can start treating construction runoff almost immediately. FWTS therefore have the potential to provide the full range of stormwater treatment (e.g. sediment and nutrient removal) from the construction phase onwards. A 2,100m 2 FWTS has been installed within a greenfield development site on the Sunshine Coast, Queensland. A four-year research study is currently underway which will target the following three objectives; (1) characterise the water quality of runoff from a greenfield development in the construction and operational phases; (2) verify the stormwater pollution removal performance of a FWTS during the construction and operational phases of a greenfield development; and (3) characterise the ability of FWTS to manage urban lake health. This extended abstract presents the proposed research methodology and anticipated outcomes of the study
MULTIFILE
Abstract: The key challenge of managing Floating Production Storage and Offloading assets (FPSOs) for offshore hydrocarbon production lies in maximizing the economic value and productivity, while minimizing the Total Cost of Ownership and operational risk. This is a comprehensive task, considering the increasing demands of performance contracting, (down)time reduction, safety and sustainability while coping with high levels of phenomenological complexity and relatively low product maturity due to the limited amount of units deployed in varying operating conditions. Presently, design, construction and operational practices are largely influenced by high-cycle fatigue as a primary degradation parameter. Empirical (inspection) practices are deployed as the key instrument to identify and mitigate system anomalies and unanticipated defects, inherently a reactive measure. This paper describes a paradigm-shift from predominant singular methods into a more holistic and pro-active system approach to safeguard structural longevity. This is done through a short review of several synergetic Joint Industry Projects (JIP’s) from different angles of incidence on enhanced design and operations through coherent a-priori fatigue prediction and posteriori anomaly detection and -monitoring.
DOCUMENT
Het W&T-onderwijs op de basisschool kent verschillende uitdagingen, die we in deze ontwerpstudie aangaan door begrips- en (vak)taalontwikkeling tegelijkertijd te ondersteunen. Daartoe ontwikkelden we een taalgerichte lessenserie die het leren verklaren van drijven en zinken, en de daartoe benodigde denkstappen, tot doel had. Deze studie evalueert hoe de kwaliteit van de verklaringen en het vaktaalgebruik in de denkstappen zich ontwikkelden. Met een schriftelijke voor- en nameting scoorden we verklaringsniveaus van 21 leerlingen (10–11 jaar) en stelden we een significante vooruitgang in de kwaliteit van verklaringen vast. De ontwikkeling van drie meertalige gevalsstudieleerlingen werd nader geanalyseerd met transcripten van interviewdata die na elk van de zes lessen werden verzameld. De interviewvragen richtten zich op het verklaren van drijven en zinken. Eerst werden de niveaus van de verklaringen van drijven en zinken gescoord. Vervolgens werd de vaktaalontwikkeling beschreven. De verklaringsniveaus en de vaktaalontwikkeling gingen niet altijd gelijk op. Uit een cross case-analyse bleek verder een toegenomen frequentie en variatie in gebruik van vaktaalwoorden, en een verschuiving naar wetenschappelijk adequatere verklaringen. Deze studie levert een proof of principle van de mogelijkheid om tegelijkertijd de kwaliteit van verklaringen en (vak)taalontwikkeling te bevorderen tijdens een taalgerichte lessenserie waarin het idee van denkstappen centraal staat.
DOCUMENT
‘The fear of crime’ is “upon everybody’s tongue” nowadays (Farrall & Gadd 2004:1). The concept is widely accepted as social problem across the globe (Gray, Jackson & Farrall 2008, Garland 2001) as it is held to impinge ‘(…) upon the well-being of a large proportion of the population’ (Farralll et al. 1997:658). But do we actually have a valid picture of a genuine ‘social problem of striking dimensions’ (Ditton 1999:83)? Critical voices say we don’t. ‘The fear of crime’ - as we generally know it - is seen by them as ‘(…) a product of the way it has been researched rather than the way it is’ (Farrall et al. 1997:658). And still, 45 years after the start of research, ‘surprisingly little can be said conclusively about the fear of crime‘ (Ditton & Farrall 2000:xxi). This research contributes to a growing body of knowledge - from especially the last fifteen years - that treats ‘the fear of crime’ as ‘(…) a complex allocation of interacting feelings, perceptions, emotions, values and judgments on the personal as well as the societal level’ (Pleysier 2010:43). One often replicated and paradoxical observation catches the eye: citizens perceive a growing threat of crime to their society, but consequently perceive a low risk that they themselves will fall victim of crime. Taking a social psychological approach (e.g. see Farrall et al. 2000; Jackson 2008), we will search for suitable explanations for this paradoxical observation in the fear of crime’s research tradition. The aim of this research is ‘to integrate social psychological concepts related to the individual’s identity and evaluation of his position in an increasingly complex society, to enhance our understanding of the fear of crime concept’ (Pleysier & Cops 2016:3).
MULTIFILE
The purpose of the design-based research reported here is to show – as a proof of principle – how the idea of scaffolding can be used to support primary teachers in a professional development programme (PDP) to design and enact language-oriented science lessons. The PDP consisted of six sessions of 2.5 h each in which twelve primary school teachers took part over a period of six months. It centralised the language support that pupils need to reason during science lessons. In line with the idea of scaffolding, the structure of the PDP targeted teachers' gradual independence in designing lessons. The first research question is how scaffolding was enacted during the PDP. The analysis of video recordings, field notes, researcher and teacher logs, and teacher design assignments focused on the enactment of three scaffolding characteristics: diagnosis, responsiveness and handover to independence. The second research question concerns what teachers learned from the participation in the PDP that followed a scaffolding approach. The data analysis illustrates that these teachers had learned much in terms of designing and enacting language-oriented science lessons. In terms of diagnosis and responsiveness, our PDP approach was successful, but we problematise the ideal of scaffolding approaches focused on handover to independence.
DOCUMENT
Peatlands can be found in almost every country in the world, but we areonly just starting to realise their value and how to harness their potential asa powerhouse nature-based solution. The more we learn about peatlands,the more we value the important services they provide - controllingfloods, purifying and supplying water, safeguarding species,harbouring deep cultural meaning, inspiring creativity and offeringlivelihoods to millions of people. We cannot afford to lose them or abusethem. A lack of understanding of peatlands’ vital role in the landscape, combined with outdated policies and perverse incentives, means that peatlands continue to be drained and damaged around the world. Peatlands are our largest terrestrial organic carbon stock, and if we are to meet ourglobal goals and commitments, we must work hard to understand,protect, restore, and sustainably manage these vital ecosystems. This Peatlands Across Europe: Innovation & Inspiration Guide is a valuable step towards that reality – it captures important recommendations, shares the cutting edge experiences of peatland restoration pioneers, and identifies gaps, priorities and lessons from across Europe that can be taken up by peatland practitioners around the globe.
DOCUMENT