This study presents a methodology designed to optimize various parameters of each access point within a Multiple-Input Single-Output (MISO) Visible Light Communication (VLC) system. The primary objective is to enhance both power and spectral efficiencies. A MISO-VLC model is presented based on experimental evaluations and a problem formulation considering intermodulation distortions based on Orthogonal Frequency Division Multiplexing modulation. A Hybrid Multi-Objective Optimization (HMO) approach is proposed, combining the Non-Sorting Genetic Algorithm III (NSGA-III) and the Multi-objective Grey Wolf Optimization (MOGWO). The proposed HMO's success was validated by a 66 % reduction in transmitted power, maintaining the Error Vector Magnitude (EVM) performance metrics even at lower power transmission levels and minimizing the guard band to its lower bound.
DOCUMENT
The nonlinearity induced by light-emitting diodes in visible light communication (VLC) systems presents a challenge to the parametrization of orthogonal frequency division multiplexing (OFDM). The goal of the multi-objective optimization problem presented in this study is to maximize the transmitted power (superimposed LED bias-current and signal amplification) for both conventional and constant envelope (CE) OFDM while also maximizing spectral efficiency. The bit error rate (BER) metric is used to evaluate the optimization using the non-dominated sorting genetic algorithm II. Simulation results show that for a BER of 1×10 −3 , the signal-to-noise ratio (SNR) required decreases with the guard band due to intermodulation distortions. In contrast to SNR values of approximately 13 and 25 dB achieved by traditional OFDM-based systems, the VLC system with CE signals achieves a guard band of 6% of the signal bandwidth with required SNR values of approximately 10.8 and 24 dB for 4-quadrature amplitude modulation (QAM) and 16-QAM modulation orders, respectively.
DOCUMENT
In this presented study, we measured in situ the uplink duty cycles of a smartphone for 5G NR and 4G LTE for a total of six use cases covering voice, video, and data applications. The duty cycles were assessed at ten positions near a 4G and 5G base-station site in Belgium. For Twitch, VoLTE, and WhatsApp, the duty cycles ranged between 4% and 22% in time, both for 4G and 5G. For 5G NR, these duty cycles resulted in a higher UL-allotted time due to time division duplexing at the 3.7 GHz frequency band. Ping showed median duty cycles of 2% for 5G NR and 50% for 4G LTE. FTP upload and iPerf resulted in duty cycles close to 100%.
MULTIFILE
In this paper, we experimentally compare orthogonal frequency-division multiplexing (OFDM) and on-off keying (OOK) modulation in the context of the IEEE 802.15.13-2023 standard at bandwidths up to 50 MHz across a Li-Fi link with distances up to 5 m and a lateral offset up to 51°. Error vector magnitude (EVM) and bit error rate (BER) evaluations confirm that the high peak-to-average power ratio (PAPR) of OFDM limits the achievable transmission distance, but it offers higher data rates due to its higher spectral efficiency. Due to the lower PAPR, OOK-based Pulsed Modulation PHY (PM-PHY) shows a significantly higher link range. As the structure of the PM-PHY is based on OFDM symbols, the two solutions may also be combined to open a wider range of use cases for optical wireless communications.
LINK
The transmission of constant-envelope orthogonal frequency division multiplexing (CE-OFDM) signals, based on electrical phase modulation, was shown to improve the tolerance to noise and the nonlinearity introduced by light-emitting diodes (LEDs) in visible light communication (VLC) systems. This allows the application of larger signal amplitudes despite the LED-nonlinearities and, thus, data transmission over larger distances. The performance of a 9.51 Mb/s CE-OFDM based system, with 16-QAM subcarrier mapping in a bandwidth of 5 MHz, was compared to the efficiency of a conventional OFDM system. The error vector magnitude (EVM) was reduced from 17.5% to 10% (which is below the FEC limit), an improvement around 43%, when the CE-OFDM scheme was applied in the VLC link of 6 m. A good performance was achieved by the CE-OFDM based VLC system in a link of 8 m, when 4-QAM was used as subcarrier mapping.
DOCUMENT
This study evaluates the maximum theoretical exposure to radiofrequency (RF) electromag- netic fields (EMFs) from a Fifth-generation (5G) New Radio (NR) base station (BS) while using four commonly used mobile applications: YouTube for video streaming, WhatsApp for voice calls, Instagram for posting pictures and videos, and running a Video game. Three factors that might affect exposure, i.e., distance of the measurement positions from the BS, measurement time, and induced traffic, were examined. Exposure was assessed through both instantaneous and time-averaged extrapolated field strengths using the Maximum Power Extrapolation (MPE) method. The former was calculated for every measured SS-RSRP (Secondary Synchronization Reference Signal Received Power) power sample obtained with a sampling resolution of 1 second, whereas the latter was obtained using a 1-min moving average applied on the applications’ instantaneous extrapolated field strengths datasets. Regarding distance, two measurement positions (MPs) were selected: MP1 at 56 meters and MP2 at 170 meters. Next, considering the measurement time, all mobile application tests were initially set to run for 30 minutes at both MPs, whereas the video streaming test (YouTube) was run for an additional 150 minutes to investigate the temporal evolution of field strengths. Considering the traffic, throughput data vs. both instantaneous and time-averaged extrapolated field strengths were observed for all four mobile applications. In addition, at MP1, a 30-minute test without a User Equipment (UE) device was conducted to analyze exposure levels in the absence of induced traffic. The findings indicated that the estimated field strengths for mobile applications varied. It was observed that distance and time had a more significant impact than the volume of data traffic generated (throughput). Notably, the exposure levels in all tests were considerably lower than the public exposure thresholds set by the ICNIRP guidelines.INDEX TERMS 5G NR, C-band, human exposure assessment, mobile applications, traffic data, maximum extrapolation method, RF-EMF.
MULTIFILE
As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE
Particle image velocimetry has been widely used in various sectors from the automotive to aviation, research, and development, energy, medical, turbines, reactors, electronics, education, refrigeration for flow characterization and investigation. In this study, articles examined in open literature containing the particle image velocimetry techniques are reviewed in terms of components, lasers, cameras, lenses, tracers, computers, synchronizers, and seeders. The results of the evaluation are categorized and explained within the tables and figures. It is anticipated that this paper will be a starting point for researchers willing to study in this area and industrial companies willing to include PIV experimenting in their portfolios. In addition, the study shows in detail the advantages and disadvantages of past and current technologies, which technologies in existing PIV laboratories can be renewed, and which components are used in the PIV laboratories to be installed.
DOCUMENT
Aim: To investigate the effects of exercise on salivary concentrations of inflammatory markers by analyzing a panel of 25 inflammatory markers in subjects who had participated in bicycle ergometer tests varying in workload and hydration status. Methods: Fifteen healthy young men (20-35 years) had performed 4 different exercise protocols of 1 hour duration in a randomly assigned cross-over design, preceded by a rest protocol. Individual workloads depended on participant's pre-assessed individual maximum workload (Wmax): rest (protocol 1), 70% Wmax in hydrated (protocol 2) and dehydrated (protocol 3) state, 50% Wmax (protocol 4) and intermittent 85%/55% Wmax in 2 min blocks (protocol 5). Saliva samples were collected before (T0) and immediately after exercise (T1), and at several time points after exercise (2 hours (T3), 3 hours (T4), 6 hours (T5) and 24 hours (T6)). Secretory Leukocyte Protease Inhibitor (SLPI), Matrix Metallopeptidase-9 (MMP-9) and lactoferrin was analyzed using a commercial ELISA kit, a panel of 22 cytokines and chemokines were analyzed using a commercial multiplex immunoassay. Data was analyzed using a multilevel mixed linear model, with multiple test correction. Results: Among a panel of 25 inflammatory markers, SLPI concentrations were significantly elevated immediately after exercise in all protocols compared to rest and higher concentrations reflected the intensity of exercise and hydration status. MMP-9 showed a significant increase in the 70% Wmax dehydrated, 50% Wmax and intermittent protocols. Conclusions: Salivary concentrations of SLPI and MMP-9 seem associated with exercise intensity and hydration status and may offer non-invasive biomarkers to study (local) inflammatory responses to different exercise intensities in human studies. sa
DOCUMENT
Background: Profiling the plant root architecture is vital for selecting resilient crops that can efficiently take up water and nutrients. The high-performance imaging tools available to study root-growth dynamics with the optimal resolution are costly and stationary. In addition, performing nondestructive high-throughput phenotyping to extract the structural and morphological features of roots remains challenging. Results: We developed the MultipleXLab: a modular, mobile, and cost-effective setup to tackle these limitations. The system can continuously monitor thousands of seeds from germination to root development based on a conventional camera attached to a motorized multiaxis-rotational stage and custom-built 3D-printed plate holder with integrated light-emitting diode lighting. We also developed an image segmentation model based on deep learning that allows the users to analyze the data automatically. We tested the MultipleXLab to monitor seed germination and root growth of Arabidopsis developmental, cell cycle, and auxin transport mutants non-invasively at high-throughput and showed that the system provides robust data and allows precise evaluation of germination index and hourly growth rate between mutants. Conclusion: MultipleXLab provides a flexible and user-friendly root phenotyping platform that is an attractive mobile alternative to high-end imaging platforms and stationary growth chambers. It can be used in numerous applications by plant biologists, the seed industry, crop scientists, and breeding companies.
LINK