This study presents a methodology designed to optimize various parameters of each access point within a Multiple-Input Single-Output (MISO) Visible Light Communication (VLC) system. The primary objective is to enhance both power and spectral efficiencies. A MISO-VLC model is presented based on experimental evaluations and a problem formulation considering intermodulation distortions based on Orthogonal Frequency Division Multiplexing modulation. A Hybrid Multi-Objective Optimization (HMO) approach is proposed, combining the Non-Sorting Genetic Algorithm III (NSGA-III) and the Multi-objective Grey Wolf Optimization (MOGWO). The proposed HMO's success was validated by a 66 % reduction in transmitted power, maintaining the Error Vector Magnitude (EVM) performance metrics even at lower power transmission levels and minimizing the guard band to its lower bound.
DOCUMENT
The nonlinearity induced by light-emitting diodes in visible light communication (VLC) systems presents a challenge to the parametrization of orthogonal frequency division multiplexing (OFDM). The goal of the multi-objective optimization problem presented in this study is to maximize the transmitted power (superimposed LED bias-current and signal amplification) for both conventional and constant envelope (CE) OFDM while also maximizing spectral efficiency. The bit error rate (BER) metric is used to evaluate the optimization using the non-dominated sorting genetic algorithm II. Simulation results show that for a BER of 1×10 −3 , the signal-to-noise ratio (SNR) required decreases with the guard band due to intermodulation distortions. In contrast to SNR values of approximately 13 and 25 dB achieved by traditional OFDM-based systems, the VLC system with CE signals achieves a guard band of 6% of the signal bandwidth with required SNR values of approximately 10.8 and 24 dB for 4-quadrature amplitude modulation (QAM) and 16-QAM modulation orders, respectively.
DOCUMENT
In this presented study, we measured in situ the uplink duty cycles of a smartphone for 5G NR and 4G LTE for a total of six use cases covering voice, video, and data applications. The duty cycles were assessed at ten positions near a 4G and 5G base-station site in Belgium. For Twitch, VoLTE, and WhatsApp, the duty cycles ranged between 4% and 22% in time, both for 4G and 5G. For 5G NR, these duty cycles resulted in a higher UL-allotted time due to time division duplexing at the 3.7 GHz frequency band. Ping showed median duty cycles of 2% for 5G NR and 50% for 4G LTE. FTP upload and iPerf resulted in duty cycles close to 100%.
MULTIFILE