The intermittency of renewable energy technologies requires adequate storage technologies. Hydrogen systems consisting of electrolysers, storage tanks, and fuel cells can be implemented as well as batteries. The requirements of the hydrogen purification unit is missing from literature. We measured the same for a 4.5 kW PEM electrolyser to be 0.8 kW for 10 min.A simulation to hybridize the hydrogen system, including its purification unit, with lithium-ion batteries for energy storage is presented; the batteries also support the electrolyser. We simulated a scenario for operating a Dutch household off-electric-grid using solar and wind electricity to find the capacities and costs of the components of the system.Although the energy use of the purification unit is small, it influences the operation of the system, affecting the sizing of the components. The battery as a fast response efficient secondary storage system increases the ability of the electrolyser to start up.
The European Union is striving for a high penetration of renewable energy production in the future energy grid. Currently, the EU energy directive is aiming for 20% renewable energy production in the year 2020. In future plans the EU strives for approximately 80% renewable energy production by the year 2050. However, high penetration of wind and solar PV energy production, both centrally and de-centrally, can possibly destabilize the electricity grid. The gas grid and the flexibility of gas, which can be transformed in both electricity and heat at different levels of scale, can help integrate and balance intermittent renewable production. One possible method of assisting the electricity grid in achieving and maintaining balance is by pre-balancing local decentralized energy grids. Adopting flexible gas based decentralized energy production can help integrate intermittent renewable electricity production, short lived by-products (e.g. heat) and at the same time minimize transport of energy carriers and fuel sources. Hence, decentralized energy grids can possibly improve the overall efficiency and sustainability of the energy distribution system. The flexibility aforementioned, can potentially give gas a pivotal role in future decentralized energy grids as load balancer. However, there are a lot of potentially variables which effect a successful integration of renewable intermittent production and load balancing within decentralized energy systems. The flexibility of gas in general opens up multiple fuel sources e.g., natural gas, biogas, syngas etc. and multiple possibilities of energy transformation pathways e.g. combined heat and power, fuel cells, high efficiency boilers etc. Intermittent renewable production is already increasing exponentially on the decentralized level where load balancing is still lacking.
The consistent demand for improving products working in a real-time environment is increasing, given the rise in system complexity and urge to constantly optimize the system. One such problem faced by the component supplier is to ensure their product viability under various conditions. Suppliers are at times dependent on the client’s hardware to perform full system level testing and verify own product behaviour under real circumstances. This slows down the development cycle due to dependency on client’s hardware, complexity and safety risks involved with real hardware. Moreover, in the expanding market serving multiple clients with different requirements can be challenging. This is also one of the challenges faced by HyMove, who are the manufacturer of Hydrogen fuel cells module (https://www.hymove.nl/). To match this expectation, it starts with understanding the component behaviour. Hardware in the loop (HIL) is a technique used in development and testing of the real-time systems across various engineering domain. It is a virtual simulation testing method, where a virtual simulation environment, that mimics real-world scenarios, around the physical hardware component is created, allowing for a detailed evaluation of the system’s behaviour. These methods play a vital role in assessing the functionality, robustness and reliability of systems before their deployment. Testing in a controlled environment helps understand system’s behaviour, identify potential issues, reduce risk, refine controls and accelerate the development cycle. The goal is to incorporate the fuel cell system in HIL environment to understand it’s potential in various real-time scenarios for hybrid drivelines and suggest secondary power source sizing, to consolidate appropriate hybridization ratio, along with optimizing the driveline controls. As this is a concept with wider application, this proposal is seen as the starting point for more follow-up research. To this end, a student project is already carried out on steering column as HIL