Given the substantial increase in children attending center-based childcare over the past decades, the consequences of center-based childcare for children’s development have gained more attention in developmental research. However, the relation between center-based childcare and children’s neurocognitive development remains relatively underexplored. The aim of this study was therefore to examine the relations between quantity of center-based childcare during infancy and the neurocognitive development (both functional brain networks and self-regulation) of 584 Dutch children. Small-world brain networks and children’s self-regulation were assessed during infancy (around 10 months of age) and the preschool period (2–6 years of age). The findings revealed that the quantity of center-based childcare during infancy was unrelated to individual differences in children’s functional brain networks. However, spending more hours per week in center-based childcare was positively related to the development of self-regulation in preschool age children, regardless of children’s sex or the levels of exposure to risk and maternal support in the home environment. More insight into the positive effects of center-based childcare on children’s development from infancy to toddlerhood can help to increase our insight into a better work–life balance and labor force participation of parents with young children. Moreover, this study highlights that Dutch center-based childcare offers opportunities to invest in positive child outcomes in children, including self-regulation.
DOCUMENT
Background: The concept of Functional Independence (FI), defined as ‘functioning physically safe and independent from other persons, within one’s context”, plays an important role in maintaining the functional ability to enable well-being in older age. FI is a dynamic and complex concept covering four clinical outcomes: physical capacity, empowerment, coping flexibility, and health literacy. As the level of FI differs widely between older adults, healthcare professionals must gain insight into how to best support older people in maintaining their level of FI in a personalized manner. Insight into subgroups of FI could be a first step in providing personalized support This study aims to identify clinically relevant, distinct subgroups of FI in Dutch community-dwelling older people and subsequently describe them according to individual characteristics. Results: One hundred fifty-three community-dwelling older persons were included for participation. Cluster analysis identified four distinctive clusters: (1) Performers – Well-informed; this subgroup is physically strong, well-informed and educated, independent, non-falling, with limited reflective coping style. (2) Performers – Achievers: physically strong people with a limited coping style and health literacy level. (3) The reliant- Good Coper representing physically somewhat limited people with sufficient coping styles who receive professional help. (4) The reliant – Receivers: physically limited people with insufficient coping styles who receive professional help. These subgroups showed significant differences in demographic characteristics and clinical FI outcomes. Conclusions: Community-dwelling older persons can be allocated to four distinct and clinically relevant subgroups based on their level of FI. This subgrouping provides insight into the complex holistic concept of FI by pointing out for each subgroup which FI domain is affected. This way, it helps to better target interventions to prevent the decline of FI in the community-dwelling older population.
DOCUMENT
In the Netherlands comparable levels of sports-participation between persons with haemophilia and healthy controls have been reported. This raises the question if children with haemophilia under the currently available prophylaxis do reach comparable levels of physical fitness and health-related quality of life (HRQoL) as their healthy peers. The aim of this study was to investigate the level of physical fitness, functional ability and quality of life and to determine the feasibility to safely test the exercise capacity of boys with severe haemophilia A. Thirteen subjects participated in this study. Physical fitness was determined using the measurement of maximal oxygen uptake (VO2peak) attained during a graded maximal exercise test to volitional exhaustion. Joint health, physical activity levels and health-related quality of life (Haemo-Qol) were also measured. Mean VO2peak was 1.86+/-0.77 L min-1 (Z-score: -0.39+/-1.61) which was not significantly different from reference values. Relative VO2peak was 47.42+/-8.29 mL min-1 kg-1 (Z-score: -0.52+/-1.43), which did not differ significantly from reference values either. One boy suffered a joint bleeding one day after the test. Haemo-Qol scores in parents and children ranged from 3.2% to 36.7% (100% reflects poor outcome). Relationship between the child or parent reports of Haemo-QoL and both absolute and relative VO2peak ranged from R=0.00 and R=0.4. Exercise testing in children with severe haemophilia A was a safe procedure. Patients with severe haemophilia A with good joint health and no limitations of activities have comparable physical fitness and physical active lifestyle with healthy peers and good HRQoL.
DOCUMENT
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Nowadays, there is particular attention towards the additive manufacturing of medical devices and instruments. This is because of the unique capability of 3D printing technologies for designing and fabricating complex products like bone implants that can be highly customized for individual patients. NiTi shape memory alloys have gained significant attention in various medical applications due to their exceptional superelastic and shape memory properties, allowing them to recover their original shape after deformation. The integration of additive manufacturing technology has revolutionized the design possibilities for NiTi alloys, enabling the fabrication of intricately designed medical devices with precise geometries and tailored functionalities. The AM-SMART project is focused on exploring the suitability of NiTi architected structures for bone implants fabricated using laser powder bed fusion (LPBF) technology. This is because of the lower stiffness of NiTi alloys compared to Ti alloys, closely aligning with the stiffness of bone. Additionally, their unique functional performance enables them to dissipate energy and recover the original shape, presenting another advantage that makes them well-suited for bone implants. In this investigation, various NiTi-based architected structures will be developed, featuring diverse cellular designs, and their long-term thermo-mechanical performance will be thoroughly evaluated. The findings of this study underscore the significant potential of these structures for application as bone implants, showcasing their adaptability for use also beyond the medical sector.