The value of a decision can be increased through analyzing the decision logic, and the outcomes. The more often a decision is taken, the more data becomes available about the results. More available data results into smarter decisions and increases the value the decision has for an organization. The research field addressing this problem is Decision mining. By conducting a literature study on the current state of Decision mining, we aim to discover the research gaps and where Decision mining can be improved upon. Our findings show that the concepts used in the Decision mining field and related fields are ambiguous and show overlap. Future research directions are discovered to increase the quality and maturity of Decision mining research. This could be achieved by focusing more on Decision mining research, a change is needed from a business process Decision mining approach to a decision focused approach.
De bestuurlijke informatievoorziening voor het tactische en strategische management kan tegenwoordig tot stand komen op basis geavanceerde Executive Information Systems (EIS). Maar 'bestuurlijke informatievoorziening met EIS' vraagt om essentiele basiskennis omtrent besturen en bestuurlijke informatie binnen organisaties. In dit artikel staan met name de toepassing van de tools centraal.
In recent years academics and industrials have shown an interest in agricultural systems and their complex and non-linear nature, aiming to improve production yield in the agricultural field. Innovative strategies and methodological frameworks are thus required to assist farmers in decision making for an efficient and effective resource management. In particular, this research concerns the structural problem of the Persian lime supply chain in Mexico, which still leads to low production yield over short time periods with heterogeneous fruit quality and also to the emergence of excessive middleman businesses arising from a fragmentation between orchard and exporting companies that constitute the first two links in the associated supply chain. Based on the Persian lime production cycle, an Expert System (ES) using Fuzzy Logic involving an inference engine with IF - THEN type rules is presented in this paper. A Mamdani model codifies the decision criteria related to agricultural practices for growing Persian lime in non-irrigated orchards. The ES allows the farmer to boost production in orchards by modeling application scenarios for agricultural practices. A case study based on an exporting companys fruit supply is discussed, in which the ES proves to be a useful tool to aid the decision making involved in the application of agricultural practices in the orchard. Results show an increase in production yield and fruit quality in the orchard, as well as a better synchronization between orchard and exporting companies, with a significant impact on inventory levels of fresh fruit in the link Persian lime exporting company.