OBJECTIVE: This scoping review aimed to gather current knowledge on accurately identifying and distinguishing between non-frail, pre-frail, and frail older adults using gait and daily physical activity (DPA) parameters and/or models that combine gait with DPA parameters in both controlled and daily life environments.METHODS: Following PRISMA-ScR guidelines, a systematic search was conducted across seven databases using key terms: "frail", "gait or walk", "IMU", and "age". Studies were included if they focused on gait analysis using Inertial Measurement Units (IMUs) for walking distances greater than 10 meters. Extracted data included study design, gait and DPA outcomes, walking conditions, and classification model performance. Gait parameters were grouped into four domains: spatio-temporal, frequency, amplitude, and dynamic gait. DPA parameters were synthesized into three categories: postural and transition, variability, and physical activity pattern.RESULTS: A total of 15 cross-sectional studies involving 2,366 participants met the inclusion criteria. Gait analysis showed (pre)frail individuals had slower, shorter steps with longer stride times compared to non-frail individuals. Pre-frail individuals showed distinct gait patterns in periodicity, magnitude range, and variability. In daily activities, (pre)frail individuals displayed shorter, fragmented walking periods and longer transitions between positions. Walking variation identified pre-frail status, showing progressive decreases from non-frail to frail states. Combined gait and daily physical activity models achieved over 97% accuracy, sensitivity and specificity in distinguishing between groups.DISCUSSION: This review provides an updated synthesis of the relationship between various gait and/or DPA parameters and physical frailty, highlighting gaps in pre-frailty detection and the variability in measurement protocols. It underscores the potential of long-term, sensor-based monitoring of daily physical activity for advancing pre-frailty screening and guiding future clinical trials. Structured Abstract BACKGROUND: Changes in gait and physical activity are critical indicators of frailty. With advancements in wearable sensor technology, long-term gait analysis using acceleration data has become more feasible. However, the contribution of parameters beyond gait speed, such as gait dynamics and daily physical activity (DPA), in identifying frail and pre-frail individuals remains unclear.OBJECTIVE: This scoping review aimed to gather knowledge on accurately identifying and differentiating physical pre-frail and frail individuals from non-frail individuals using gait parameters alone or models that combine gait and DPA parameters, both in controlled settings and daily life environments.METHODS: The review followed PRISMA-ScR guidelines. A search strategy incorporating key terms-"frail", "gait or walk", "IMU", and "age"-was applied across seven databases from inception to March 1, 2024. Studies were included if they focused on gait analysis in controlled or daily environments using Inertial Measurement Units (IMUs) and involved walking distances longer than 10 meters. Data on walking conditions, gait outcomes, classification methods, and results were extracted. Gait parameters were categorized into four domains: spatio-temporal, frequency, amplitude, and dynamic gait. DPA parameters were synthesized into three categories: postural and transition, variability, physical activity pattern.RESULTS: A total of 15 cross-sectional observational studies met the eligibility criteria, covering 2,366 participants, with females representing 27%-80% of the sample and ages ranging from 60 to 92 years. Regarding gait parameters, (pre)frail individuals exhibited longer stride times, slower walking speeds, shorter steps, and reduced cadence compared to non-frail individuals. In three studies, pre-frail could be distinguished from the non-frail and frail group through gait periodicity, range of magnitude, and gait variability. DPA patterns differed between groups, with (pre)frail individuals showing shorter and more fragmented walking periods, brief walking bouts and longer postural transitions. Walking bout variation (CoV) effectively identified pre-frail status, decreasing 53.73% from non-frail to pre-frail, and another 30.87% from pre-frail to frail. Models combining both gait and DPA parameters achieved the highest accuracy (97.25%), sensitivity (98.25%), and specificity (98.25%) in distinguishing between groups.DISCUSSION: This scoping review provides an updated overview of the current knowledge and gaps in understanding the relationship between gait parameters across different domains and DPA parameters along with physical frailty. Significant variability in gait measurement methods and protocols complicates direct comparisons between studies. The review emphasizes the need for further research, particularly in pre-frailty screening, and underscores the potential of inertial sensor-based long-term monitoring of daily physical activity for future clinical trials.
DOCUMENT
Objectives: To investigate immediate changes in walking performance associated with three implicit motor learning strategies and to explore patient experiences of each strategy. Design: Participants were randomly allocated to one of three implicit motor learning strategies. Within-group comparisons of spatiotemporal parameters at baseline and post strategy were performed. Setting: Laboratory setting. Subjects: A total of 56 community-dwelling post-stroke individuals. Interventions: Implicit learning strategies were analogy instructions, environmental constraints and action observation. Different analogy instructions and environmental constraints were used to facilitate specific gait parameters. Within action observation, only videotaped gait was shown. Main measures: Spatiotemporal measures (speed, step length, step width, step height) were recorded using Vicon 3D motion analysis. Patient experiences were assessed by questionnaire. Results: At a group level, three of the four analogy instructions (n=19) led to small but significant changes in speed (d=0.088m/s), step height (affected side d=0.006m) and step width (d=–0.019m), and one environmental constraint (n=17) led to significant changes in step width (d=–0.040m). At an individual level, results showed wide variation in the magnitude of changes. Within action observation (n=20), no significant changes were found. Overall, participants found it easy to use the different strategies and experienced some changes in their walking performance. Conclusion: Analogy instructions and environmental constraints can lead to specific, immediate changes in the walking performance and were in general experienced as feasible by the participants. However, the response of an individual patient may vary quite considerably.
DOCUMENT
BACKGROUND: Instability of the knee joint during gait is frequently reported by patients with knee osteoarthritis or an anterior cruciate ligament rupture. The assessment of instability in clinical practice and clinical research studies mainly relies on self-reporting. Alternatively, parameters measured with gait analysis have been explored as suitable objective indicators of dynamic knee (in)stability.RESEARCH QUESTION: This literature review aimed to establish an inventory of objective parameters of knee stability during gait.METHODS: Five electronic databases (Pubmed, Embase, Cochrane, Cinahl and SPORTDiscuss) were systematically searched, with keywords concerning knee, stability and gait. Eligible studies used an objective parameter(s) to assess knee (in)stability during gait, being stated in the introduction or methods section. Out of 10717 studies, 89 studies were considered eligible.RESULTS: Fourteen different patient populations were investigated with kinematic, kinetic and/or electromyography measurements during (challenged) gait. Thirty-three possible objective parameters were identified for knee stability, of which the majority was based on kinematic (14 parameters) or electromyography (12 parameters) measurements. Thirty-nine studies used challenged gait (i.e. external perturbations, downhill walking) to provoke knee joint instability. Limited or conflicting results were reported on the validity of the 33 parameters.SIGNIFICANCE: In conclusion, a large number of different candidates for an objective knee stability gait parameter were found in literature, all without compelling evidence. A clear conceptual definition for dynamic knee joint stability is lacking, for which we suggest : "The capacity to respond to a challenge during gait within the natural boundaries of the knee". Furthermore biomechanical gait laboratory protocols should be harmonized, to enable future developments on clinically relevant measure(s) of knee stability during gait.
LINK
Background The gait modification strategies Trunk Lean and Medial Thrust have been shown to reduce the external knee adduction moment (EKAM) in patients with knee osteoarthritis which could contribute to reduced progression of the disease. Which strategy is most optimal differs between individuals, but the underlying mechanism that causes this remains unknown. Research question Which gait parameters determine the optimal gait modification strategy for individual patients with knee osteoarthritis? Methods Forty-seven participants with symptomatic medial knee osteoarthritis underwent 3-dimensional motion analysis during comfortable gait and with two gait modification strategies: Medial Thrust and Trunk Lean. Kinematic and kinetic variables were calculated. Participants were then categorized into one of the two subgroups, based on the modification strategy that reduced the EKAM the most for them. Multiple logistic regression analysis with backward elimination was used to investigate the predictive nature of dynamic parameters obtained during comfortable walking on the optimal modification gait strategy. Results For 68.1 % of the participants, Trunk Lean was the optimal strategy in reducing the EKAM. Baseline characteristics, kinematics and kinetics did not differ significantly between subgroups during comfortable walking. Changes to frontal trunk and tibia angles correlated significantly with EKAM reduction during the Trunk Lean and Medial Thrust strategies, respectively. Regression analysis showed that MT is likely optimal when the frontal tibia angle range of motion and peak knee flexion angle in early stance during comfortable walking are high (R2Nagelkerke = 0.12). Significance Our regression model based solely on kinematic parameters from comfortable walking contained characteristics of the frontal tibia angle and knee flexion angle. As the model explains only 12.3 % of variance, clinical application does not seem feasible. Direct assessment of kinetics seems to be the most optimal strategy for selecting the most optimal gait modification strategy for individual patients with knee osteoarthritis.
MULTIFILE
In order to achieve a level of community involvement and physical independence, being able to walk is the primary aim of many stroke survivors. It is therefore one of the most important goals during rehabilitation. Falls are common in all stages after stroke. Reported fall rates in the chronic stage after stroke range from 43 to 70% during one year follow up. Moreover, stroke survivors are more likely to become repeated fallers as compared to healthy older adults. Considering the devastating effects of falls in stroke survivors, adequate fall risk assessment is of paramount importance, as it is a first step in targeted fall prevention. As the majority of all falls occur during dynamic activities such as walking, fall risk could be assessed using gait analysis. It is only recent that technology enables us to monitor gait over several consecutive days, thereby allowing us to assess quality of gait in daily life. This thesis studies a variety of gait assessments with respect to their ability to assess fall risk in ambulatory chronic stroke survivors, and explores whether stroke survivors can improve their gait stability through PBT.
DOCUMENT
BackgroundExercise-induced fatigue is a common consequence of physical activities. Particularly in older adults, it can affect gait performance. Due to a wide variety in fatiguing protocols and gait parameters used in experimental settings, pooled effects are not yet clear. Furthermore, specific elements of fatiguing protocols (i.e., intensity, duration, and type of activity) might lead to different changes in gait parameters. We aimed to systematically quantify to what extent exercise-induced fatigue alters gait in community-dwelling older adults, and whether specific elements of fatiguing protocols could be identified.MethodsThis systematic review and meta-analysis was conducted in accordance with the PRISMA guidelines. In April 2023, PubMed, Web of Science, Scopus, Cochrane and CINAHL databases were searched. Two independent researchers screened and assessed articles using ASReview, Rayyan, and ROBINS-I. The extracted data related to spatio-temporal, stability, and variability gait parameters of healthy older adults (55 +) before and after a fatiguing protocol or prolonged physical exercise. Random-effects meta-analyses were performed on both absolute and non-absolute effect sizes in RStudio. Moderator analyses were performed on six clusters of gait parameters (Dynamic Balance, Lower Limb Kinematics, Regularity, Spatio-temporal Parameters, Symmetry, Velocity).ResultsWe included 573 effect sizes on gait parameters from 31 studies. The included studies reflected a total population of 761 older adults (57% female), with a mean age of 71 (SD 3) years. Meta-analysis indicated that exercise-induced fatigue affected gait with a standardized mean change of 0.31 (p < .001). Further analyses showed no statistical differences between the different clusters, and within clusters, the effects were non-uniform, resulting in an (indistinguishable from) zero overall effect within all clusters. Elements of fatiguing protocols like duration, (perceived) intensity, or type of activity did not moderate effects.DiscussionDue to the (mainly) low GRADE certainty ratings as a result of the heterogeneity between studies, and possible different strategies to cope with fatigue between participants, the only conclusion that can be drawn is that older adults, therapist, and researchers should be aware of the small to moderate changes in gait parameters as a result of exercise-induced fatigue.
DOCUMENT
Background Altered muscle-tendon properties in clubfoot patients could play a role in the occurrence of a relapse and negatively affect physical functioning. However, there is a lack of literature about muscle-tendon properties of clubfoot relapse patients. Research question The aim of this study was to determine whether the muscle architecture of the medial gastrocnemius and the morphology of the Achilles tendon differ between typically developing children (TDC) and clubfoot patients with and without a relapse clubfoot and to determine the relationships between morphological and functional gait outcomes. Methods A cross-sectional study was carried out in clubfoot patients treated according to the Ponseti method and TDC aged 4–8 years. A division between clubfoot patients with and without a relapse was made. Fifteen clubfoot patients, 10 clubfoot relapse patients and 19 TDC were included in the study. Morphologic properties of the medial head of the Gastrocnemius muscle and Achilles tendon were assessed by ultrasonography. Functional gait outcomes were assessed using three-dimensional gait analysis. Mean group differences were analysed with ANOVA and non-parametric alternatives. Relationships between functional and morphologic parameters were determined for all clubfoot patients together and for TDC with Spearman’s rank correlation. Results Morphological and functional gait parameters did not differ between clubfoot patients with and without a relapse, with exception of lower maximal dorsiflexor moment in clubfoot relapse patients. Compared to TDC, clubfoot and relapse patients did show lower functional gait outcomes, as well as shorter and more pennate muscles with a longer Achilles tendon. In all clubfoot patients, this longer relative tendon was related to higher ankle power and plantarflexor moment. Significance In clubfoot and relapse patients, abnormalities in morphology did not always relate to worse functional gait outcomes. Understanding these relationships in all clubfoot patients may improve the knowledge about clubfoot and aid future treatment planning.
MULTIFILE
Introduction: Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. Aim: To examine how different modes of arm swing affect gait stability. Method: Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. Results: We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior–posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Discussion: Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Conclusion: Excessive arm swing significantly increases local dynamic stability of human gait.
DOCUMENT
The Rollz Motion Smart rollator detects posture, gait and activity of a user and provides feedback. • Various programs to train the user and optimize walking performance. • Measuring gait parameters like velocity, step time, step length, distance between person and rollator. • Visual, tactile and auditory cues help the user to take the first step or maintain a suitable walking rhythm.
DOCUMENT
Background Objective gait analysis that fully captures the multi-segmental foot movement of a clubfoot may help in early identification of a relapse clubfoot. Unfortunately, this type of objective measure is still lacking in a clinical setting and it is unknown how it relates to clinical assessment. Research question The aim of this study was to identify differences in total gait and foot deviations between clubfoot patients with and without a relapse clubfoot and to evaluate their relationship with clinical status. Methods In this study, Ponseti-treated idiopathic clubfoot patients were included and divided into clubfoot patients with and without a relapse. Objective gait analysis was done resulting in total gait and foot scores and clinical assessment was performed using the Clubfoot Assessment Protocol (CAP). Additionally, a new clubfoot specific foot score, the clubFoot Deviation Index (cFDI*), was calculated to better capture foot kinematics of clubfoot patients. Results Clubfoot patients with a relapse show lower total gait quality (GDI*) and lower clinical status defined by the CAP than clubfoot patients without a relapse. Abnormal cFDI* was found in relapse patients, reflected by differences in corresponding variable scores. Moderate relationships were found for the subdomains of the CAP and total gait and foot quality in all clubfoot patients. Significance A new total foot score was introduced in this study, which was more relevant for the clubfoot population. The use of this new foot score (cFDI*) besides the GDI*, is recommended to identify gait and foot motion deviations. Along with clinical assessment, this will give an overview of the overall status of the complex, multi-segmental aspects of a (relapsed) clubfoot. The relationships found in this study suggest that clinical assessment might be indicative of a deviation in total gait and foot pattern, therefore hinting towards personalised screening for better treatment decision making.
MULTIFILE