A significant proportion of adolescents with chronic musculoskeletal pain (CMP) experience difficulties in physical functioning, mood and social functioning, contributing to diminished quality of life. Generalized joint hypermobility (GJH) is a risk factor for developing CMP with a striking 35-48% of patients with CMP reporting GJH. In case GJH occurs with one or more musculoskeletal manifestations such as chronic pain, trauma, disturbed proprioception and joint instability, it is referred to as generalized hypermobility spectrum disorder (G-HSD). Similar characteristics have been reported in children and adolescents with the hypermobile Ehlers-Danlos Syndrome (hEDS). In the management of CMP, a biopsychosocial approach is recommended as several studies have confirmed the impact of psychosocial factors in the development and maintenance of CMP. The fear-avoidance model (FAM) is a cognitive-behavioural framework that describes the role of pain-related fear as a determinant of CMP-related disability. Pubmed was used to identify existing relevant literature focussing on chronic musculoskeletal pain, generalized joint hypermobility, pain-related fear and disability. Relevant articles were cross-referenced to identify articles possibly missed during the primary screening. In this paper the current state of scientific evidence is presented for each individual component of the FAM in hypermobile adolescents with and without CMP. Based on this overview, the FAM is proposed explaining a possible underlying mechanism in the relations between GJH, pain-related fear and disability. It is assumed that GJH seems to make you more vulnerable for injury and experiencing more frequent musculoskeletal pain. But in addition, a vulnerability for heightened pain-related fear is proposed as an underlying mechanism explaining the relationship between GJH and disability. Further scientific confirmation of this applied FAM is warranted to further unravel the underlying mechanism. In explaining disability in individuals with G-HSD/hEDS, it is important to focus on both the physical components related to joint hypermobility, in tandem with the psychological components such as pain-related fear, catastrophizing thoughts and generalized anxiety.
INTRODUCTION: To provide a state of the art on diagnostics, clinical characteristics, and treatment of paediatric generalised joint hypermobility (GJH) and joint hypermobility syndrome (JHS).METHOD: A narrative review was performed regarding diagnostics and clinical characteristics. Effectiveness of treatment was evaluated by systematic review. Searches of Medline and Central were performed and included nonsymptomatic and symptomatic forms of GJH (JHS, collagen diseases).RESULTS: In the last decade, scientific research has accumulated on all domains of the ICF. GJH/JHS can be considered as a clinical entity, which can have serious effects during all stages of life. However research regarding the pathological mechanism has resulted in new potential opportunities for treatment. When regarding the effectiveness of current treatments, the search identified 1318 studies, from which three were included (JHS: n = 2, Osteogenesis Imperfecta: n = 1). According to the best evidence synthesis, there was strong evidence that enhancing physical fitness is an effective treatment for children with JHS. However this was based on only two studies.CONCLUSION: Based on the sparsely available knowledge on intervention studies, future longitudinal studies should focus on the effect of physical activity, fitness, and joint stabilisation. In JHS and chronic pain, the effectiveness of a multidisciplinary approach should be investigated.
BackgroundIn adolescents with non-pathological and pathological joint hypermobility, gait deviations have been associated with pain and fatigue. It remains unclear what distinguishes the non-pathological form of joint hypermobility (JH) from pathological forms (i.e. hypermobile Ehlers-Danlos syndrome (hEDS) or hypermobility spectrum disorders (HSD). Our objective was to identify discriminative clinical characteristics and biomechanical gait features between adolescents with hEDS/HSD, JH, and healthy controls (HC).MethodsThirty-two adolescents were classified into three subgroups (hEDS/HSD=12, JH=5, HC=15). Clinical characteristics (e.g. pain intensity and surface, fatigue, functional disability) were inventoried.The gait pattern was assessed using a three-dimensional, eight-camera VICON MX1.3 motion capture system, operating at a sample rate of 100 Hz (VICON, Oxford, UK). Spatiotemporal parameters, joint angles (sagittal plane), joint work, joint impulse, ground reaction force and gait variability expressed as percentage using Principal Component Analysis (PCA) were assessed and analysed using multivariate analysis. Multivariate analysis data is expressed in mean differences(MD), standard error(SE) and P-values.ResultsThe hEDS/HSD-group had significantly higher fatigue score (+51.5 points, p = <0.001) and functional disability (+1.6, p < .001) than the HC-group. Pain intensity was significantly higher in the hEDS/HSD-group than the other subgroups (JH; +37 mm p = .004, HC; +38 mm, p = .001). The hEDS/HSD-group showed significantly more gait variability (JH; +7.2(2.0)% p = .003, HC; + 7.8(1.4)%, p = <0.001) and lower joint work (JH; −0.07(0.03)J/kg, p = .007, HC; − 0.06(0.03)J/kg, p = .013) than the other subgroups. The JH-group showed significantly increased ankle dorsiflexion during terminal stance (+5.0(1.5)degree, p = .001) compared to hEDS/HSD-group and knee flexion during loading response compared to HC-group (+5.7(1.8) degree, p = .011).SignificanceA distinctive difference in gait pattern between adolescents with non-pathological and pathological joint hypermobility is found in gait variability, rather than in the biomechanical features of gait. This suggests that a specific gait variability metric is more appropriate than biomechanical individual joint patterns for assessing gait in adolescents with hEDS/HSD.