Catalytic pyrolysis of crude glycerol over a shaped H-ZSM-5 zeolite catalyst with (partial) recycling of the product oil was studied with the incentive to improve benzene, toluene, and xylene (BTX) yields. Recycling of the polycyclic aromatic hydrocarbon (PAH) fraction, after separation from BTX by distillation and co-feeding with the crude glycerol feed, was shown to have a positive effect on the BTX yield. Further improvements were achieved by hydrogenation of the PAH fraction using a Ru/C catalyst and hydrogen gas prior to co-pyrolysis, and BTX yields up to 16 wt% on feed were obtained. The concept was also shown to be beneficial to other biomass feeds such as e.g., Kraft lignin, cellulose, and Jatropha oil.
DOCUMENT
A time- and space-resolved deactivation study on the conversion of glycerol to aromatics over H-ZSM-5 was performed. For this purpose, glycerol was vaporized/pyrolyzed in a pyrolysis section followed by a catalytic aromatization step. Benchmark performance showed an induction period of ca. 20 min, followed by a rather constant BTX yield of ca. 25.4 ± 2.2C.% for 3–4 h time on stream (TOS). Subsequently, a rapid drop in BTX yield was observed due to catalyst deactivation. Severe coking leads to coverage of catalyst surface area and blockage of micropores, particularly at the entrance of the catalyst bed at short TOS, indicating the presence of an axial coke gradient in the fixed bed reactor. At longer TOS, coke was formed throughout the bed and negligible BTX yield was shown to be associated with the presence of coke at all bed positions. Besides coking, the acidity of the catalyst was also reduced, and dealumination occurred, both with a similar time–space evolution. The results were explained by a conversion-zone migration model, which includes a deactivation zone (with severely coked catalyst), a conversion zone (BTX formation), and an induction zone (a.o. (de-)alkylation reactions), and describes the time- and space-resolved evolution of coking and relevant changes in other catalyst characteristics.
DOCUMENT
The catalytic coconversion of glycerol and toluene (93/7 wt %) over a technical H-ZSM-5/Al2O3 (60-40 wt %) catalyst was studied, aiming for enhanced production of biobased benzene, toluene, and xylenes (bio-BTX). When using glycerol/toluene cofeed with a mass ratio of 93/7 wt %, a peak BTX carbon yield of 29.7 ± 1.1 C.% (at time on stream (TOS) of 1.5-2.5 h), and an overall BTX carbon yield of 28.7 C.% (during TOS of 8.5 h) were obtained, which are considerably higher than those (19.1 ± 0.4 C.% and 11.0 C.%) for glycerol alone. Synergetic effects when cofeeding toluene on the peak and overall BTX carbon yields were observed and quantified, showing a relative increase of 3.1% and 30.0% for the peak and overall BTX carbon yield (based on the feedstock). These findings indicate that the strategy of cofeeding in situ produced toluene for the conversion of glycerol to aromatics has potential to increase BTX yields. In addition, BTX production on the catalyst (based on the fresh catalyst during the first run for TOS of 8.5 h and without regeneration) is significantly improved to 0.547 ton ton-1catalyst (excluding the 76% of toluene product that is 0.595 ton ton-1catalyst for the recycle in the cofeed) for glycerol/toluene cofeed, which was 0.426 ton ton-1catalyst for glycerol alone. In particular, this self-sufficient toluene product recycling strategy is advantageous for the production and selectivity (relative increase of 84.4% and 43.5% during TOS of 8.5 h) of biobased xylenes.
DOCUMENT
Glycerol is an attractive bio-based platform chemical that can be converted to a variety of bio-based chemicals. We here report a catalytic co-conversion strategy where glycerol in combination with a second (bio-)feed (fatty acids, alcohols, alkanes) is used for the production of bio-based aromatics (BTX). Experiments were performed in a fixed bed reactor (10 g catalyst loading and WHSV of (co-)feed of 1 h-1) at 550 °C using a technical H-ZSM-5/Al2O3 catalyst. Synergistic effects of the co-feeding on the peak BTX carbon yield, product selectivity, total BTX productivity, catalyst life-time, and catalyst regenerability were observed and quantified. Best results were obtained for the co-conversion of glycerol and oleic acid (45/55 wt%), showing a peak BTX carbon yield of 26.7 C%. The distribution of C and H of the individual co-feeds in the BTX product was investigated using an integrated fast pyrolysis-GC-Orbitrap MS unit, showing that the aromatics are formed from both glycerol and the co-feed. The results of this study may be used to develop optimized co-feeding strategies for BTX formation. This journal is
DOCUMENT
The catalytic conversion of glycerol to aromatics (GTA, e.g., benzene, toluene, and xylenes, BTX) over a shaped H-ZSM-5/Al2O3 (60/40 wt%) catalyst was investigated in a continuous fixed-bed reactor to study the addition of the Al2O3 binder in the catalyst formulation on catalyst performance. The experiments were performed under N2 at 550 °C, a WHSV of glycerol (pure) of 1 h−1, and atmospheric pressure. The spent H-ZSM-5/Al2O3 catalysts were reused after an oxidative regeneration at 680 °C and in total 5 reaction-regeneration cycles were performed. Catalyst characterization studies show that the addition of the Al2O3 binder does not affect the surface area and crystallinity of the formulation, but increases the total pore volume (mesopores in particular) and total acidity (Lewis acidity in particular). The H-ZSM-5/Al2O3 (60/40 wt%) catalyst shows a considerably prolonged catalyst life-time (8.5 vs. 6.5 h for H-ZSM-5), resulting in a significant increase in the total BTX productivity (710 vs. 556 mg g−1 H-ZSM-5). Besides, the addition of the Al2O3 binder retards irreversible deactivation. For instance, after 3 regenerations, catalyst performance is comparable to the fresh one. However, after 4 regenerations, some irreversible catalyst deactivation occurs, associated with a reduction in total pore volume, crystallinity, and acidity (Brønsted acidity in particular), and meso-porosity of the Al2O3 binder. This study shows that both the stability and reusability of H-ZSM-5-based catalysts for GTA are remarkably enhanced when using a suitable binder.
DOCUMENT
DOCUMENT
The use of H-ZSM-5 with various binders (Al2O3, SiO2, and kaolinite, 10 wt% on catalyst formulation) for the catalytic conversion of glycerol to bio-based aromatics (GTA) was investigated in a continuous bench-scale unit at a pyrolysis temperature of 450 °C, catalytic upgrading temperature of 500 °C, WHSV of pure glycerol of 1 h−1, and atmospheric pressure, and their performance was compared to H-ZSM-5 (SiO2/Al2O3 molar ratio of 28). The latter gave a peak BTX carbon yield of ca. 31.1C.%, a life-time of ca. 220 min, and a total BTX productivity of ca. 312 mg BTX g−1H-ZSM-5. The introduction of binders affects catalyst performance, which is the most profound and promising for the H-ZSM-5/Al2O3 catalyst. It shows a prolonged catalyst life-time of ca. 320 min and a higher total BTX productivity of ca. 518 mg BTX g−1H-ZSM-5, compared to the H-ZSM-5 without a binder. Catalyst characterization studies show that the addition of the binder does not have a major effect on the specific surface area, total pore volume, and total acidity. Other relevant properties were affected, though, such as micropore volume (SiO2), a reduced Brønsted acidity (Al2O3, and SiO2), and reduced crystallinity (SiO2). Coke formation causes severe catalyst deactivation, ultimately leading to an inactive catalyst for BTX formation. Catalyst characterization studies after an oxidative regeneration showed that the textural properties of the regenerated catalysts were close to those of the original catalysts. However, some dealumination of H-ZSM-5 occurs, resulting in decreased crystallinity and acidity, causing irreversible deactivation, which needs attention in future catalyst development studies.
DOCUMENT
Artikel in Agro & Chemie over de productie van exogene ketonen in het projecten Circulaire Biopolymeren Waardeketens voor PHA en Cellulose.
DOCUMENT
Currently the advances in the field of 3D printing are causing a revolution in the (bio-)medical field. With applications ranging from patient-specific anatomical models for surgical preparation to prosthetic limbs and even scaffolds for tissue engineering, the possibilities seem endless. Today, the most widely used method is FDM printing. However, there is still a limited range of biodegradable and biocompatible materials available. Moreover, printed implants like for instance cardiovascular stents require higher resolution than is possible to reach with FDM. High resolution is crucial to avoid e.g. bacterial growth and aid to mechanical strength of the implant. For this reason, it would be interesting to consider stereolithography as alternative to FDM for applications in the (bio-) medical field. Stereolithography uses photopolymerizable resins to make high resolution prints. Because the amount of commercially available resins is limited and hardly biocompatible, here we investigate the possibility of using acrylates and vinylesters in an effort to expand the existing arsenal of biocompatible resins. Mechanical properties are tailorable by varying the crosslink density and by varying the spacer length. To facilitate rapid production of high-resolution prints we use masked SLA (mSLA) as an alternative to conventional SLA. mSLA cures an entire layer at a time and therefore uses less time to complete a print than conventional SLA. Additionally, with mSLA it takes the same time to make 10 prints as it would to make only one. Several formulations were prepared and tested for printability and mechanical strength.
MULTIFILE