RATIONALE: Current developments drive dieticians in the primary care setting to demonstrate their effectiveness to both patients and stakeholders. Working with SMART (Specific, Measurable, Attainable, Realistic, Time-bound) goal setting may increase effectiveness. This study describes the current dietetic practice in the primary care setting in The Netherlands with regard to goal setting.
Objective: To evaluate the preliminary effectiveness of a goal-directed movement intervention using a movement sensor on physical activity of hospitalized patients. Design: Prospective, pre-post study. Setting: A university medical center. Participants: Patients admitted to the pulmonology and nephrology/gastro-enterology wards. Intervention: The movement intervention consisted of (1) self-monitoring of patients' physical activity, (2) setting daily movement goals and (3) posters with exercises and walking routes. Physical activity was measured with a movement sensor (PAM AM400) which measures active minutes per day. Main measures: Primary outcome was the mean difference in active minutes per day pre- and post-implementation. Secondary outcomes were length of stay, discharge destination, immobility-related complications, physical functioning, perceived difficulty to move, 30-day readmission, 30-day mortality and the adoption of the intervention. Results: A total of 61 patients was included pre-implementation, and a total of 56 patients was included post-implementation. Pre-implementation, patients were active 38 ± 21 minutes (mean ± SD) per day, and post-implementation 50 ± 31 minutes per day (Δ12, P = 0.031). Perceived difficulty to move decreased from 3.4 to 1.7 (0-10) (Δ1.7, P = 0.008). No significant differences were found in other secondary outcomes. Conclusions: The goal-directed movement intervention seems to increase physical activity levels during hospitalization. Therefore, this intervention might be useful for other hospitals to stimulate inpatient physical activity.
Introduction: Self-management is considered a potential answer to the increasing demand for family medicine by people suffering from a chronic condition or multi-morbidity. A key element of self-management is goal setting. Goal setting is often defined as a moment of agreement between a professional and a patient. In the self-management literature, however, goal setting is regarded as a circular process. Still, it is unclear how professionals working in family medicine can put it into practice. This background paper aims to contribute to the understanding of goal setting within self-management and to identify elements that need further development for practical use. Debate: Four questions for debate emerge in this article: (1) What are self-management goals? (2) What is necessary to accomplish the process of goal setting within self-management? (3) How can professionals decide on the degree of support needed for goal setting within self-management? (4) How can patients set their goals and how can they be supported? Implications: Self-management goals can be set for different (life) domains. Using a holistic framework will help in creating an overview of patients’ goals that do not merely focus on medical issues. It is a challenge for professionals to coach their patients to think about and set their goals themselves. More insight in patients’ willingness and ability to set self-management goals is desirable. Moreover, as goal setting is a circular process, professionals need to be supported to go through this process with their patients.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
The denim industry faces many complex sustainability challenges and has been especially criticized for its polluting and hazardous production practices. Reducing resource use of water, chemicals and energy and changing denim production practices calls for collaboration between various stakeholders, including competing denim brands. There is great benefit in combining denim brands’ resources and knowledge so that commonly defined standards and benchmarks are developed and realized on a scale that matters. Collaboration however, and especially between competitors, is highly complex and prone to fail. This project brings leading denim brands together to collectively take initial steps towards improving the ecological sustainability impact of denim production, particularly by establishing measurements, benchmarks and standards for resource use (e.g. chemicals, water, energy) and creating best practices for effective collaboration. The central research question of our project is: How do denim brands effectively collaborate together to create common, industry standards on resource use and benchmarks for improved ecological sustainability in denim production? To answer this question, we will use a mixed-method, action research approach. The project’s research setting is the Amsterdam Metropolitan Area (MRA), which has a strong denim cluster and is home to many international denim brands and start-ups.
A feeling of worry, anxiety, loneliness and anticipation are commonplace in both medical and non-medical arenas such as elderly care. An innovative solution such as the ‘simple and effective’ comfyhand would offer better patient care and improved care efficiency with a high chance of long-term, economic efficiency. ComfyHand is a start-up in the healthcare sector that aims to develop sustainable products to improve patient wellbeing in healthcare settings. It does this by emulating the experience of holding a hand which gives the person comfort and support in moments where real human contact is not possible. Right now the comfyhand is in the development phase, working on several prototypes for test trials in elderly care and hospitals. In this project we want to explore the use of 3D printing for producing a comfyhand. Desired properties for the prototype include optimal heat transfer, softness, regulation of sweat, durability and sustainability. The goal of this study is to develop a prototype to test in a trial with patients within Envida, a care centre. The trial itself is out of scope of this project. This proposal focuses on researching the material of choice and the processability. Building on knowledge gained in a previous Kiem GoChem project and a Use Case (Shape3Dup) of a currently running Raak MKB project (Enlighten) on 3D printing of breast prostheses, several materials, designs and printing parameters will be tested.