From the article: Abstract Since decision management is becoming an integrated part of business process management, more and more decision management implementations are realized. Therefore, organizations search for guidance to design such solutions. Principles are often applied to guide the design of information systems in general. A particular area of interest when designing decision management solutions is compliance. In an earlier published study (Zoet & Smit, 2016) we took a general perspective on principles regarding the design of decision management solutions. In this paper, we re-address our earlier work, yet from a different perspective, the compliance perspective. Thus, we analyzed how the principles can be utilized in the design of compliant decision management solutions. Therefore, the purpose of this paper is to specify, classify, and validate compliance principles. To identify relevant compliance principles, we conducted a three round focus group and three round Delphi Study which led to the identification of eleven compliance principles. These eleven principles can be clustered into four categories: 1) surface structure principles, 2) deep structure principles, 3) organizational structure principles, and 4) physical structure principles. The identified compliance principles provide a framework to take into account when designing information systems, taking into account the risk management and compliance perspective.
Due to the changing technological possibilities of services, the demands that society places on the level of service provided by the Dutch Central Government (DCG) are changing rapidly. To accommodate this, the Dutch government is improving its processes in such a way that they become more agile and are continuously improved. However, the DCG struggles with the implementation of improvement tools that can support this. The research described in this paper aims to deliver key factors that influence the adoption of tools that improve the agile way of working and continuous improvement at the DCG. Therefore, a literature review has been conducted, from which 24 factors have been derived. Subsequently, 9 semi structured interviews have been conducted to emphasize the perspective of employees at the DCG. In total, 7 key factors have been derived from the interviews. The interviewees consisted of both employees from departments who already worked with tools to improve agile working and continuous improvement as well as employees from departments who haven’t used such tools yet. An important insight based on this research is that the aims, way of working and scope of the improvement tools must be clear for all the involved co-workers
Since an increasing amount of business decision/logic management solutions are utilized, organizations search for guidance to design such solutions. An important aspect of such a solution is the ability to guard the quality of the specified or modified business decisions and underlying business logic to ensure logical soundness. This particular capability is referred to as verification. As an increasing amount of organizations adopt the new Decision Management and Notation (DMN) standard, introduced in September 2015, it is essential that organizations are able to guard the logical soundness of their business decisions and business logic with the help of certain verification capabilities. However, the current knowledge base regarding verification as a capability is not yet researched in relation to the new DMN standard. In this paper, we re-address and - present our earlier work on the identification of 28 verification capabilities applied by the Dutch government [1]. Yet, we extended the previous research with more detailed descriptions of the related literature, findings, and results, which provide a grounded basis from which further, empirical, research on verification capabilities with regards to business decisions and business logic can be explored.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. While extensive attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.