Energiebeheer gericht aanpakken, Het analyseren van doelstellingen, resultaten en impacts van energie- en broeikasgasbeheersprogramma’s in bedrijven (met een samenvatting in het Nederlands): De wereldwijde uitstoot van broeikasgassen moet drastisch worden teruggebracht om de mondiale stijging van de temperatuur tot het relatief veilige niveau van maximaal 2 graden Celsius te beperken. In de komende decennia zal de verbetering van de energie-efficiëntie de belangrijkste strategie zijn voor het verminderen van de energiegerelateerde uitstoot van broeikasgassen. Hoewel er een enorm potentieel is voor verbetering van de energie-efficiëntie, wordt een groot deel daarvan nog niet benut. Dit wordt veroorzaakt door diverse investeringsbarrières die de invoering van maatregelen voor energie-efficiëntie verbetering verhinderen. De invoering van energiemanagement wordt vaak beschouwd als een manier om dergelijke barrières voor energiebesparing te overwinnen. De invoering van energiemanagement in bedrijven kan worden gestimuleerd door de introductie van programma's voor energie-efficiëntie verbetering en vermindering van de uitstoot van broeikasgassen. Deze programma's zijn vaak een combinatie van verschillende elementen zoals verplichtingen voor energiemanagement; (ambitieuze) doelstellingen voor energiebesparing of beperking van de uitstoot van broeikasgassen; de beschikbaarheid van regelingen voor stimulering, ondersteuning en naleving; en andere verplichtingen, zoals openbare rapportages, certificering en verificatie. Tot nu toe is er echter beperkt inzicht in het proces van het formuleren van ambitieuze doelstellingen voor energie-efficiëntie verbetering of het terugdringen van de uitstoot van broeikasgassen binnen deze programma's, in de gevolgen van de invoering van dergelijke programma's op de verbetering van het energiemanagement, en in de impact van deze programma's op energiebesparing of de vermindering van de uitstoot van broeikasgassen. De centrale onderzoeksvraag van dit proefschrift is als volgt geformuleerd: "Wat is de impact van energie- en broeikasgasmanagement programma’s op het verbeteren van het energiemanagement in de praktijk, het versnellen van de energieefficiëntie verbetering en het beperken van de uitstoot van broeikasgassen in bedrijven?".
DOCUMENT
Energy management and carbon accounting schemes are increasingly being adopted as a corporate response to climate change. These schemes often demand the setting of ambitious targets for the reduction of corporate greenhouse gas emissions. There is however only limited empirical insight in the companies’ target setting process and the auditing practice of certifying agencies that evaluate ambition levels of greenhouse gas reduction targets. We studied the target setting process of firms participating in the CO2 Performance Ladder. The CO2 Performance Ladder is a new certifiable scheme for energy management and carbon accounting that is used as a tool for green public procurement in the Netherlands. This study aimed at answering the question ‘to what extent does the current target setting process in the CO2 Performance Ladder lead to ambitious CO2 emission reduction goals?’. The research methods were interviews with relevant stakeholders (auditors, companies and consultants), document reviews of the certification scheme, and an analysis of corporate target levels for the reduction of CO2 emissions. The research findings showed that several certification requirements for target setting for the reduction of CO2 emissions were interpreted differently by the various actors and that the conformity checks by the auditors did not include a full assessment of all certification requirements. The research results also indicated that corporate CO2 emission reduction targets were not very ambitious. The analysis of the target setting process revealed that there was a semi-structured bottom-up auditing practice for evaluating the corporate CO2 emission reduction targets, but the final assessment whether target levels were sufficiently ambitious were rather loose. The main conclusion is that the current target setting process in the CO2 Performance Ladder did not necessarily lead to establishing the most ambitious goals for CO2 emission reduction. This process and the tools to assess the ambition level of the CO2 emission reduction targets need further improvement in order to maintain the CO2 Performance Ladder as a valid tool for green public procurement.
DOCUMENT
Ship-source greenhouse gas (GHG) emissions could increase by up to 250% from 2012 levels by 2050 owing to increasing global freight volumes. Binding international legal agreements to regulate GHGs, however, are lacking as technical solutions remain expensive and crucial industrial support is absent. In 2003, IMO adopted Resolution A.963 (23) to regulate shipping CO2 emissions via technical, operational, and market-based routes. However, progress has been slow and uncertain; there is no concrete emission reduction target or definitive action plan. Yet, a full-fledged roadmap may not even emerge until 2023. In this policy analysis, we revisit the progress of technical, operational, and market-based routes and the associated controversies. We argue that 1) a performance-based index, though good-intentioned, has loopholes affecting meaningful CO2 emission reductions driven by technical advancements; 2) using slow steaming to cut energy consumption stands out among operational solutions thanks to its immediate and obvious results, but with the already slow speed in practice, this single source has limited emission reduction potential; 3) without a technology-savvy shipping industry, a market-based approach is essentially needed to address the environmental impact. To give shipping a 50:50 chance for contributing fairly and proportionately to keep global warming below 2°C, deep emission reductions should occur soon.
DOCUMENT
PBL is the initiator of the Work Programme Monitoring and Management Circular Economy 2019-2023, a collaboration between CBS, CML, CPB, RIVM, TNO, UU. Holidays and mobility are part of the consumption domains that PBL researches, and this project aims to calculate the environmental gains per person per year of the various circular behavioural options for both holiday behaviour and daily mobility. For both behaviours, a range of typical (default) trips are defined and for each several circular option explored for CO2 emissions, Global warming potential and land use. The holiday part is supplied by the Centre for Sustainability, Tourism and Transport (CSTT) of the BUas Academy of Tourism (AfT). The mobility part is carried out by the Urban Intelligence professorship of the Academy for Built Environment and Logistics (ABEL).The research question is “what is the environmental impact of various circular (behavioural) options around 1) holidays and 2) passenger mobility?” The consumer perspective is demarcated as follows:For holidays, transportation and accommodation are included, but not food, attractions visited and holiday activitiesFor mobility, it concerns only the circular options of passenger transport and private means of transport (i.e. freight transport, business travel and commuting are excluded). Not only some typical trips will be evaluated, but also the possession of a car and its alternatives.For the calculations, we make use of public databases, our own models and the EAP (Environmental Analysis Program) model developed by the University of Groningen. BUAs projectmembers: Centre for Sustainability, Tourism and Transport (AT), Urban Intelligence (ABEL).
In the road transportation sector, CO2 emission target is set to reduce by at least 45% by 2030 as per the European Green Deal. Heavy Duty Vehicles contribute almost quarter of greenhouse gas emissions from road transport in Europe and drive majorly on fossil fuels. New emission restrictions creates a need for transition towards reduced emission targets. Also, increasing number of emission free zones within Europe, give rise to the need of hybridization within the truck and trailer community. Currently, in majority of the cases the trailer units do not possess any kind of drivetrain to support the truck. Trailers carry high loads, such that while accelerating, high power is needed. On the other hand, while braking the kinetic energy is lost, which otherwise could be recaptured. Thus, having a trailer with electric powertrain can support the truck during traction and can charge the battery during braking, helping in reducing the emissions and fuel consumption. Using the King-pin, the amount of support required by trailer can be determined, making it an independent trailer, thus requiring no modification on the truck. Given the heavy-duty environment in which the King-pin operates, the measurement design around it should be robust, compact and measure forces within certain accuracy level. Moreover, modification done to the King-pin is not apricated. These are also the challenges faced by V-Tron, a leading company in the field of services in mobility domain. The goal of this project is to design a smart King-pin, which is robust, compact and provides force component measurement within certain accuracy, to the independent e-trailer, without taking input from truck, and investigate the energy management system of the independent e-trailer to explore the charging options. As a result, this can help reduce the emissions and fuel consumption.
The textile industry contributes over 8% of global greenhouse gas emissions and 20% of the world's wastewater, exceeding emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 resulted in about 270 kg of CO₂ emissions per person, yet only 1% of used clothes are recycled into new garments.To address these challenges, the Textile Hub Groningen (THG) aims to assist small and medium-sized enterprises (SMEs) and stakeholders in forming circular textile value chains, hence reducing waste. Designing circular value chains is complex due to conflicting interests, lack of shared understanding, knowledge gaps regarding circular design principles and emerging technologies, and inadequate tools for collaborative business model development. The potential key stakeholders in the circular textile value chain find it hard to use existing tools and methods for designing these value chains as they are often abstract, not designed to be used in a collaborative setting that fosters collective sense making, immersive learning and experimentation. Consequently, the idea of circular textile value chain remains abstract and hard to realize.Serious games have been used in the past to learn about, simulate and experiment with complex adaptive systems. In this project we aim to answer the following research:How can serious games be leveraged to design circular textile value chains in the region?The expected outcomes of this project are: • Serious game: Facilitates the design of circular textile value chains• Academic Publication: Publish findings to contribute to scholarly discourse.• Future Funding Preparation: Mobilize partners and prepare proposals for follow-up funding to expand the approach to other domains.By leveraging game-based collaborative circular value chain and business model design experiences, this project aims to overcome barriers in designing viable circular value chains in the textile industry.