Summary:A novel Smart Charging strategy, based on low base allowances per charger combined with 1. clustering of chargers on the same part of the grid and 2. dynamic non guaranteed allowance, is presented in this paper. This manner of Smart Charging will allow more than 3 times the amount of chargers to be installed in the existing grid, even when the grid is already congested. The system also improves the usage of available flexibility in EV charging compared to other Smart Charging strategies. The required algorithms are tested on public chargers in Amsterdam, in some of the most intensely used parts of the Dutch grid.
DOCUMENT
This study used historical data from a Park & Ride facility in Amsterdam to build a validated computer (Python) model to optimize battery and grid connection sizing. The case study modelled is equipped with 8 EV chargers (16 connections), an on-site supplementary battery, and a limited capacity grid connection. This model was then used to optimize the battery energy storage capacity and grid connection capacity for minimal annualized investment, using a future proof monthly load profile. A variety of battery control strategies were simulated using both the optimal system sizing and the current system sizing. The results were compared and a recommended control strategy presented, considering a number of performance metrics.
MULTIFILE
The ever-increasing electrification of society has been a cause of utility grid issues in many regions around the world. With the increased adoption of electric vehicles (EVs) in the Netherlands, many new charge points (CPs) are required. A common installation practice of CPs is to group multiple CPs together on a single grid connection, the so-called charging hub. To further ensure EVs are adequately charged, various control strategies can be employed, or a stationary battery can be connected to this network. A pilot project in Amsterdam was used as a case study to validate the Python model developed in this study using the measured data. This paper presents an optimisation of the battery energy storage capacity and the grid connection capacity for such a P&R-based charging hub with various load profiles and various battery system costs. A variety of battery control strategies were simulated using both the optimal system sizing and the case study sizing. A recommendation for a control strategy is proposed.
DOCUMENT
Based on the model outcomes, Houtlaan’s energy transition will likely result in congestion and curtailmentproblems on the local electricity grid within the next 5-7 years, possibly sooner if load imbalance between phasesis not properly addressed.During simulations, the issue of curtailment was observed in significant quantities on one cable, resulting in aloss of 8.292 kWh of PV production per year in 2030. This issue could be addressed by moving some of thehouses on the affects cable to a neighboring under-utilized cable, or by installing a battery system near the end ofthe affected cable. Due to the layout of the grid, moving the last 7 houses on the affected cable to the neighboringcable should be relatively simple and cost-effective, and help to alleviate issues of curtailment.During simulations, the issue of grid overloading occurred largely as a result of EV charging. This issue can bestbe addressed by regulating EV charging. Based on current statistics, the bulk of EV charging is expected to occurin the early evening. By prolonging these charge cycles into the night and early morning, grid overloading canlikely be prevented for the coming decade. However, such a control system will require some sort of infrastructureto coordinate the different EV charge cycles or will require smart EV chargers which will charge preferentiallywhen the grid voltage is above a certain threshold (i.e., has more capacity available).A community battery system can be used to increase the local consumption of produced electricity within theneighborhood. Such a system can also be complemented by charging EV during surplus production hours.However, due to the relatively high cost of batteries at present, and losses due to inefficiencies, such a systemwill not be financially feasible without some form of subsidy and/or unless it can provide an energy service whichthe grid operator is willing to pay for (e.g. regulating power quality or line voltage, prolonging the lifetime of gridinfrastructure, etc.).A community battery may be most useful as a temporary solution when problems on the grid begin to occur, untila more cost-effective solution can be implemented (e.g. reinforcing the grid, implementing an EV charge controlsystem). Once a more permanent solution is implemented, the battery could then be re-used elsewhere.The neighborhood of Houtlaan in Assen, the Netherlands, has ambitious targets for reducing the neighborhood’scarbon emissions and increasing their production of their own, sustainable energy. Specifically, they wish toincrease the percentage of houses with a heat pump, electric vehicle (EV) and solar panels (PV) to 60%, 70%and 80%, respectively, by the year 2030. However, it was unclear what the impacts of this transition would be onthe electricity grid, and what limitations or problems might be encountered along the way.Therefore, a study was carried out to model the future energy load and production patterns in Houtlaan. Thepurpose of the model was to identify and quantify the problems which could be encountered if no steps are takento prevent these problems. In addition, the model was used to simulate the effectiveness of various proposedsolutions to reduce or eliminate the problems which were identified
Residential electricity distribution grid capacityis based on the typical peak load of a house and the loadsimultaneity factor. Historically, these values have remainedpredictable, but this is expected to change due to increasingelectric heating using heat pumps and rooftop solar panelelectricity generation. It is currently unclear how this increasein electrification will impact household peak load and loadsimultaneity, and hence the required grid capacity of residentialelectricity distribution grids. To gain better insight, transformerand household load measurements were taken in an all-electricneighborhood over a period of three years. These measurementswere analyzed to determine how heat pumps and solar panelswill alter peak load and load simultaneity and hence gridcapacity design parameters. Moreover, the potential for smartgrids to reduce peak loads and load simultaneity, and hencereduce required grid capacities, was examined.
De verplichting in de Binnenvaart om haar emissies te reduceren leidt tot grote uitdagingen in de sector, omdat nieuwe technologie in bestaande schepen tot problemen leidt en vaak een te grote investering vraagt. VIV, de branchevereniging van inbouw-, reparatie- en revisiebedrijven, heeft zich uitgesproken voor het gebruik van hernieuwbare methanol. Het ontbreekt de bedrijven echter aan kennis en vaardigheid over de conversie van een bestaande dieselmotor naar hernieuwbare methanol. De methanol industrie, verenigd in het Methanol Institute, zet zich in voor het gebruik van methanol in de scheepvaart. In de Zeevaart is al ervaring opgedaan met hernieuwbare methanol, maar de schaal en technologie verschilt met die in onze Binnenvaart. VIV en het Methanol Institute hebben de HAN benaderd met de vraag om de kennis en vaardigheid in gebruik van hernieuwbare methanol in scheepsmotoren te vergroten. De HAN beantwoordt deze marktvraag in 4 werkpakketten waar het draait om de retrofit conversie van een bestaande binnenvaartaandrijving, op een praktisch toepasbare manier. Ze maakt hier een vertaalslag van de wetenschap en kennis bij grote zeevaartmotoren, naar het binnenvaart-MKB. Dit gebeurt door te onderzoeken binnen welke kaders, en met welke indicatoren tijdens het afstellen van een onderzoeksmotor, een optimale methanol dual-fuel motor opgezet kan worden. Het hoofddoel is het verhogen van de kennis en vaardigheid over dual-fuel motoren op Hernieuwbare Methanol in de reparatie- en revisiesector. Het Schoon Schip project combineert de opgedane kennis met kennis uit de academische wereld, en de motorervaring van alle partners, om tot een betrouwbare toepassing van methanol in de binnenvaart te komen. Het gaat er om tot een werkende praktijkoplossing te komen voor het gebruik van hernieuwbare methanol in de bestaande vloot van 12.000 binnenvaartschepen.