Smart charging protocols for electric vehicles can help avoid overload and instability in the electrical distribution network and can increase the proportion of locally generated solar energy used for charging. Our results show that the impact of smart charging depends heavily on the technical charging characteristics of the target vehicle.
MULTIFILE
In this research, the experiences and behaviors of end-users in a smart grid project are explored. In PowerMatching City, the leading Dutch smart grid project, 40 households were equipped with various decentralized energy sources (PV and microCHP), hybrid heat pumps, smart appliances, smart meters and an in-home display. Stabilization and optimization of the network was realized by trading energy on the market. To reduce peak loads on the smart grid, several types of demand side management were tested. Households received feedback on their energy use either based on costs, or on the percentage of consumed energy that had been produced locally. Furthermore, devices could be controlled automatically, smartly or manually to optimize the energy use of the households. Results from quantitative and qualitative research showed that: (1) feedback on costs reduction is valued most; (2) end-users preferred to consume self-produced energy (this may even be the case when, from a cost or sustainability perspective, it is not the most efficient strategy to follow); (3) automatic and smart control are most popular, but manually controlling appliances is more rewarding; (4) experiences and behaviors of end-users depended on trust between community members, and on trust in both technology (ICT infrastructure and connected appliances) and the participating parties.
Standard mass-production is a well-known manufacturing concept. To make small quantities or even single items of a product according to user specifications at an affordable price, alternative agile production paradigms should be investigated and developed. The system presented in this paper is based on a grid of cheap reconfigurable production units, called equiplets. A grid of these equiplets is capable to produce a variety of different products in parallel at an affordable price. The underlying agent-based software for this system is responsible for the agile manufacturing. An important aspect of this type of manufacturing is the transport of the products along the available equiplets. This transport of the products from equiplet to equiplet is quite different from standard production. Every product can have its own unique path along the equiplets. In this paper several topologies are discussed and investigated. Also, the planning and scheduling in relation to the transport constraints is subject of this study. Some possibilities of realization are discussed and simulations are used to generate results with the focus on efficiency and usability for different topologies and layouts of the grid and its internal transport system.