Waarom groene waterzuivering, en welke plaats neemt groene waterzuivering in de waterketen in? Verder is de vraag belangrijk wanneer we voor technische en wanneer we voor groene waterzuivering kiezen. In hoofdstuk 1 zal dit besproken worden. In hoofdstuk 2 zetten we een aantal aspecten van waterzuivering op een rij, en bespreken we hoe groene resp. technische waterzuivering hierop scoren. Om de plaats van groene waterzuivering in de tijd aan te geven, schetsen we in hoofdstuk 3 een korte geschiedenis van de waterzuivering en geven we de ontwikkelingen daarin aan. In hoofdstuk 4 volgen de aspecten en doelen van groene waterzuivering. We laten andere technieken buiten beschouwing, zoals membraanfiltratie, chemische technieken enz. Nadrukkelijk krijgt hier beleving en biodiversiteit een plaats. Het beleid en wet- en de regelgeving worden hier ook behandeld. Van belang is de probleemanalyse van (afval)waterstromen en stoffen helder te hebben. Dan weten we van welk systeem we gebruik moeten maken. Dit komt in hoofdstuk 5 aan de orde. In hoofdstuk 6 worden de systemen van groene waterzuivering uitgelegd. Gestart wordt met een matrix waarin per systeem duidelijk wordt voor welke afvalstromen dit geschikt is. Van elk systeem worden de volgende aspecten beschreven: - technische beschrijving + foto + doorsnede; - zuiveringsrendementen per stof; - dimensionering (min./max. omvang); - toepassingsgebied; - beheer; - aanleg- en beheerkosten; - bijdrage biodiversiteit/beleving; - aandachtspunten/randvoorwaarden voor het ontwerp, waarin beheer en kosten een rol spelen. In hoofdstuk 7 komt de monitoring aan bod. Ten slotte wordt in hoofdstuk 8 het Handboek afgesloten met praktijkvoorbeelden.
MULTIFILE
Martien Visser is er klip en klaar over: transport, distributie en opslag van gas is vele malen goedkoper dan van elektriciteit of warmte.
LINK
Dankzij de enorme groei van zon en wind is steeds minder gas en kolen nodig voor de Nederlandse elektriciteitsproductie. De groei brengt ook uitdagingen. “Zo blijkt het stroomnet een beperkende factor bij de verdere uitbouw van zon en wind. Dat geldt nog meer voor de elektriciteitsvraag. Op steeds meer uren en dagen produceren windturbines en zonnepanelen meer elektriciteit dan we nodig hebben. Als gevolg daarvan is die elektriciteit op de markt niets waard en ontstaan zelfs negatieve prijzen. Beheerders van zon- en windparken schakelen dan af.”
LINK
In the course of the “energie transitie” hydrogen is likely to become a very important energy carrier. The production of hydrogen (and oxygen) by water electrolysis using electricity from sun or wind is the only sustainable option. Water electrolysis is a well-developed technique, however the production costs of hydrogen by electrolysis are still more expensive than the conventional (not sustainable) production by steam reforming. One challenge towards the large scale application of water electrolysis is the fabrication of stable and cheap (noble metal free) electrodes. In this project we propose to develop fabrication methods for working electrodes and membrane electrode stack (MEAs) that can be used to implement new (noble metal free) electrocatalysts in water electrolysers.
Als gevolg van de energietransitie wordt het steeds moeilijker om energieaanbod en -vraag op elkaar af te stemmen en ontstaan problemen op het elektriciteitsnet. Energieopslag biedt een oplossing: duurzame energie wordt opgeslagen op momenten dat er aanbod en weinig energievraag is en beschikbaar gesteld wanneer er weinig aanbod en veel vraag is. Lokale opslag biedt een kans om lokale uitval van het elektriciteitsnet te voorkomen en geeft meerwaarde aan duurzame energie. Opslag in waterstof is uitermate geschikt voor zowel toepassingen op MW-schaal (windparken), voor seizoensopslag en voor toepassingen waar distributie relevant is. De wens van bedrijventerreinen om te verduurzamen biedt een kans om gericht aan oplossingen voor lokale energieopslag in waterstof en bijbehorende toepassingen te werken. In dit project werkt de HAN samen met MKB-bedrijven, Saxion, TU Delft, lokale overheden en een aantal overige partners aan het ontwikkelen en optimaliseren van een energieopslagsysteem gebaseerd op waterstof en bijbehorende waterstoftoepassingen op en voor bedrijventerrein IPKW in Arnhem. Beschikbare windenergie van in aanbouw zijnde turbines langs de Rijn bij IPKW vormen de aanleiding voor het ontwerpen, modelleren, construeren en testen van een (geschaald) energieopslagsysteem gebaseerd op de productie, en opslag van waterstof. Specifieke toepassingen op het industriepark worden geïnventariseerd, en waar mogelijk gerealiseerd en gemonitord, voor met name lokaal bedrijfstransport en elektriciteitslevering. Scenario’s voor ontwikkeling en toepassing van de technologie ontwikkeld en haalbaarheidsstudies uitgevoerd. Kennis en expertise worden ontwikkeld om het proces van optimale implementatie van waterstof voor energieopslag in een energieketen met specifieke toepassingen op een bedrijventerrein te ondersteunen. Met dit project bouwen wij voort op de vele eerdere waterstofprojecten die bij de HAN zijn uitgevoerd en maken we gebruik van ons recent gerealiseerde shared facility HAN Waterstoflab op IPKW.
Aanleiding De productie van wind- en zonne-energie gaat met onzekerheid gepaard. Dat kan leiden tot een gebrek aan evenwicht tussen vraag en aanbod van energie. Power-to-Gas (P2G) middels biologische methaanvorming (Bio-P2G) is een methode om meer en hogere kwaliteit methaan te maken als drager en opslag van duurzame energie. Bio-P2G zou daarmee een technologisch en economisch aantrekkelijke bijdrage kunnen leveren aan een betere afstemming van vraag en aanbod. En daarmee aan de overgang van fossiele naar duurzame energie en aan de vermindering van de kooldioxide-uitstoot. Zeven bedrijven, die samen de gehele gaswaardeketen vertegenwoordigen, willen weten hoe Bio-P2G in de toekomst kan uitwerken en hoe dit hun bedrijfsvoering zou beïnvloeden. Doelstelling Dit project beoogt in kaart te brengen of Bio-P2G op technologisch en economisch aantrekkelijke wijze kan bijdragen aan de afstemming van vraag en aanbod van duurzame energie in Nederland en zo ja, onder welke voorwaarden. Het programma start met een literatuuronderzoek naar de kennis rond Bio-P2G. Op basis van dit onderzoek selecteert het team de gunstigste parameters. Speciale aandacht gaat daarbij uit naar de bacteriën die zorgen voor de methaanvorming. Het onderzoeksteam identificeert en karakteriseert deze via DNA-technologie. De resultaten daarvan zijn richtinggevend voor de proefinstallatie waarmee het projectteam checkt of de prestaties en werkzaamheid ook op grotere schaal gelden. Het team gebruikt eigen data, data uit het literatuuronderzoek en data van de consortiumbedrijven voor het economisch modelleren van de Bio-P2G-keten. Beoogde resultaten Het consortium beoogt twee resultaten: 1) de mogelijkheden en grenzen vaststellen van het integreren van Bio-P2G in het Nederlandse energiesysteem; 2) een beschrijving van hoe deze integratie in een periode van 10 tot 15 jaar gerealiseerd kan worden. Bij het project zijn studenten van 6 bacheloropleidingen van de Hanzehogeschool betrokken. Ook studenten van de European Master of Renewable Energy, een promovendus (RuG) en verschillende lectoraten participeren in het project. De kennisuitwisseling en -disseminatie met de maatschappelijke partners vindt onder meer plaats via twee publieke evenementen, publicaties en een proefschrift. Aan de hand van een communicatie- en implementatieplan worden de resultaten van het project vertaald naar de curricula en de beroepspraktijk.