Research finds that the global market value of cargo bikes will hit 2.4 billion euros by 2031. Analysts with Future Market Insights assessing the growth of cargo bikes have placed the parcel courier industry as a key buyer of electric cargo bikes, forecasting that 43 per cent of sales could go to this industry. This growth is driven by city logistics trends, particularly as studies emerge showing the high efficiency and cost saving of the cargo bike versus the delivery van. It will not solely be direct incentives that drive uptake, however. The policy that restricts motoring and emissions is expected to be a key driver for businesses that seek profitability, with three-wheeled electric cargo bikes making up nearly half the market. The advance of e-bike technology has seen a strong rise in market share for assisted cargo bikes, now accounting for a 73 per cent market share. Potentially limiting the growth is the legislation governing the output and range of electric cargo bikes (FMI, 2021).To deal with the issues of faster delivery, clean delivery (low/zero emission) and less space in dense cities, the light electric freight vehicle (LEFV) can be–and is used more and more as–an innovative solution. The way logistics in urban areas is organized is being challenged, as the global growth of cities leads to more jobs, more businesses and more residents. As a result, companies, workers, residents and visitors demand more goods and produce more waste. More space for logistics activities in and around cities is at odds with the growing need for accommodation for people living and working in cities. Book: Innovations in Transport: Success, Failure and Societal Impacts
Here is something that all Europeans find of prime importance: affordable access to good health care; high quality elderly care; being able to live independently, even if you are handicapped or chronically ill.
MULTIFILE
An overview of innovations in a particular area, for example retail developments in the fashion sector (Van Vliet, 2014), and a subsequent discussion about the probability as to whether these innovations will realise a ‘breakthrough’, has to be supplemented with the question of what the added value is for the customer of such a new service or product. The added value for the customer must not only be clear as to its direct (instrumental or hedonic) incentives but it must also be tested on its merits from a business point of view. This requires a methodology. Working with business models is a method for describing the added value of products/services for customers in a systematic and structured manner. The fact that this is not always simple is evident from the discussions about retail developments, which do not excel in well-grounded business models. If there is talk about business models at all, it is more likely to concern strategic positioning in the market or value chain, or the discussion is about specifics like earning- and distribution-models (see Molenaar, 2011; Shopping 2020, 2014). Here we shall deal with two aspects of business models. First of all we shall look at the different perspectives in the use of business models, ultimately arriving at four distinctive perspectives or methods of use. Secondly, we shall outline the context within which business models operate. As a conclusion we shall distil a research framework from these discussions by presenting an integrated model as the basis for further research into new services and product.
The transition towards an economy of wellbeing is complex, systemic, dynamic and uncertain. Individuals and organizations struggle to connect with and embrace their changing context. They need to create a mindset for the emergence of a culture of economic well-being. This requires a paradigm shift in the way reality is constructed. This emergence begins with the mindset of each individual, starting bottom-up. A mindset of economic well-being is built using agency, freedom, and responsibility to understand personal values, the multi-identity self, the mental models, and the individual context. A culture is created by waving individual mindsets together and allowing shared values, and new stories for their joint context to emerge. It is from this place of connection with the self and the other, that individuals' intrinsic motivation to act is found to engage in the transitions towards an economy of well-being. This project explores this theoretical framework further. Businesses play a key role in the transition toward an economy of well-being; they are instrumental in generating multiple types of value and redefining growth. They are key in the creation of the resilient world needed to respond to the complex and uncertain of our era. Varta-Valorisatielab, De-Kleine-Aarde, and Het Groene Brein are frontrunner organizations that understand their impact and influence. They are making bold strategic choices to lead their organizations towards an economy of well-being. Unfortunately, they often experience resistance from stakeholders. To address this resistance, the consortium in the proposal seeks to answer the research question: How can individuals who connect with their multi-identity-self, (via personal values, mental models, and personal context) develop a mindset of well-being that enables them to better connect with their stakeholders (the other) and together address the transitional needs of their collective context for the emergence of a culture of the economy of wellbeing?
Every year in the Netherlands around 10.000 people are diagnosed with non-small cell lung cancer, commonly at advanced stages. In 1 to 2% of patients, a chromosomal translocation of the ROS1 gene drives oncogenesis. Since a few years, ROS1+ cancer can be treated effectively by targeted therapy with the tyrosine kinase inhibitor (TKI) crizotinib, which binds to the ROS1 protein, impairs the kinase activity and thereby inhibits tumor growth. Despite the successful treatment with crizotinib, most patients eventually show disease progression due to development of resistance. The available TKI-drugs for ROS1+ lung cancer make it possible to sequentially change medication as the disease progresses, but this is largely a ‘trial and error’ approach. Patients and their doctors ask for better prediction which TKI will work best after resistance occurs. The ROS1 patient foundation ‘Stichting Merels Wereld’ raises awareness and brings researchers together to close the knowledge gap on ROS1-driven oncogenesis and increase the options for treatment. As ROS1+ lung cancer is rare, research into resistance mechanisms and the availability of cell line models are limited. Medical Life Sciences & Diagnostics can help to improve treatment by developing new models which mimic the situation in resistant tumor cells. In the current proposal we will develop novel TKI-resistant cell lines that allow screening for improved personalized treatment with TKIs. Knowledge of specific mutations occurring after resistance will help to predict more accurately what the next step in patient treatment could be. This project is part of a long-term collaboration between the ROS1 patient foundation ‘Stichting Merels Wereld’, the departments of Pulmonary Oncology and Pathology of the UMCG and the Institute for Life Science & Technology of the Hanzehogeschool. The company Vivomicx will join our consortium, adding expertise on drug screening in complex cell systems.
In the last decade, the concept on interactions between humans, animals and their environment has drastically changed, endorsed by the One Health approach that recognizes that health of humans and animals are inextricably linked. Consideration of welfare of livestock has increased accordingly and with it, attention into the possibilities to improve livestock health via natural, more balanced nutrition is expanding. Central to effects of healthy nutrition is an optimal gastrointestinal condition which entails a well-balanced functional local immune system leading to a resilient state of well-being. This project proposal, GITools, aims to establish a toolbox of in vitro assays to screen new feed ingredients for beneficial effects on gastrointestinal health and animal well-being. GITools will focus on pig and chicken as important livestock species present in high quantities and living in close proximity to humans. GITools builds on intestinal models (intestinal cell lines and stem cell-derived organoids), biomarker analysis, and in vitro enzymatic and microbial digestion models of feed constituents. The concept of GITools originated from various individual contacts and projects with industry partners that produce animal feed (additives) or veterinary medicines. Within these companies, an urgent need exists for straightforward, well-characterized and standardized in vitro methods that provide results translatable to the in vivo situation. This to replace testing of new feed concepts in live animal. We will examine in vitro methods for their applicability with feed ingredients selected based on the availability of data from (previous) in vivo studies. These model compounds will include long and short chain fatty acids, oligosaccharides and herbal-derived components. GITools will deliver insights on the role of intestinal processes (e.g. dietary hormone production, growth of epithelial cells, barrier function and innate immune responses) in health and well-being of livestock animals and improve the efficiency of testing new feed products.